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RESUMO GERAL 

 

O contexto espacial foi empregado nas aplicações de sensoriamento remoto: 

classificação de imagens, detecção de mudanças e inventário florestal. 

Primeiramente, os parâmetros do semivariograma derivados de imagens de 

satélite com diferentes resoluções espaciais foram avaliados para caracterizar a 

heterogeneidade espacial da cobertura de solo. No estudo referente a 

classificação de imagens, o objetivo foi avaliar o potencial de atributos 

geoestatisticos em uma classificação orientada a objetos para melhorar o 

resultado da classificação de imagens. No estudo de detecção de mudanças foi 

avaliado a performance dos índices do semivariograma derivados de imagens 

NDVI Landsat, utilizando análise orientada a objetos, para detectar com acurácia 

mudanças na cobertura do solo, desconsiderando as mudanças associadas aos 

efeitos fenológicos da vegetação. No artigo aplicado ao inventário florestal, foi 

investigado o potencial de dados extraídos de imagens Landsat, MODIS e 

variáveis espaço-temporais para mapear a distribuição espacial da biomassa 

aérea no Estado de Minas Gerais, utilizando o algoritmo Random forest e 

krigagem regressiva através da amostragem estratificado. Os resultados 

demonstraram que: (1) a resolução espacial das imagens influencia os 

parâmetros alcance e patamar do semivariograma, que podem ser utilizados 

como simples indicadores da heterogeneidade da cobertura do solo; (2) os 

semivariogramas foram eficientes para caracterizar a heterogeneidade da 

cobertura do solo, aumentando significativamente a acurácia da classificação de 

imagens combinando atributos geoestatisticos com dados espectrais; (3) os 

atributos geoestatisticos apresentam potencial para distinguir classes 

homogêneas e heterogêneas, não são afetados pela sazonalidade da vegetação, e 

podem produzir séries temporais que minimizam os efeitos da fenologia da 

vegetação, e (4) a estratificação em fitofisionomias não permite apenas a 

estimativa da biomassa aérea da vegetação com alta precisão, mas também 

permite que o algoritmo Random forest selecione o menor número de variáveis 

que resulte em um modelo com menor erro. O contexto espacial apresentado 

nesta tese é novo e aplicado para a classificação de imagens que contenha 

fitofisionomias espectralmente semelhantes; para a detecção de mudanças em 

áreas onde a vegetação apresenta alta sazonalidade, e o mapa detalhado de 

biomassa aérea da vegetação e o entendimento que como as características das 

variáveis estão associadas com a modelagem de cada fitofisionomia, permite 

pesquisadores melhorarem as estimativas grosseiras de emissão de gases de 

efeito estufa, auxiliando a seleção das variáveis mais apropriadas para modelar a 

biomassa em áreas de transição entre o Cerrado e Florestas. 

 

Palavras-chave: Contexto geoestatistico. Semivariograma. Sensoriamento 

remoto.  



GENERAL ABSTRACT 

 

We used the spatial context, specifically the geostatistical techniques to improve 

remote sensing applications: image classification, change detection and forest 

inventory. We first evaluate the potential of semivariogram parameters, derived 

from satellite images with different spatial resolutions to characterize landscape 

spatial heterogeneity. In the image classification study, the goal was to assess the 

potential of geostatistical features at the object level to improve the image 

classification of contrasted landscape vegetation cover. In the change detection 

approaches we explored and evaluated the performance of semivariogram 

indices in an object-based approach to detecting land-cover changes using the 

NDVI derived from Landsat images using the support vector machines and 

random forest algorithms. We assessed the potential of geostatistical features to 

accurately detect land-cover changes, disregarding those associated with 

phenological differences. In the forest inventory manuscript, we investigated the 

potential of data extracted from Landsat TM, MODIS products and spatial-

environmental variables to map the spatial distribution of aboveground biomass 

in Minas Gerais State, using random forest regression algorithm and regression 

kriging technique using a stratified design. The applications results indicate that: 

(1) image spatial resolution does in fact influence the sill and range parameters, 

that can be used as a simple indicator of landscape heterogeneity; (2) 

semivariogram curves were efficient for characterizing spatial heterogeneity, 

significantly improving the image classification accuracy when combining 

geostatistical features with spectral data; (3) geostatistical features have the 

potential to discriminate between homogeneous and heterogeneous classes 

within objects, are not affected by vegetation seasonality, and can produce times 

series that accurately differentiate forest changes from seasonal changes, 

resulting in fewer classification errors and (4) the stratification of data 

into vegetation types not only improved the accuracy of aboveground biomass 

estimative, but also allowed random forest regression to select the lowest 

number of variables that offer the best predictive model performance to AGB 

mapping. The spatial context approach we presented in this thesis is a novel and 

useful remote sensing method for the image classification of spectrally similar 

land-cover types, detection of forest change events in areas where forests exhibit 

strong seasonality, and therefining aboveground biomass map and the 

understanding of how the variables properties are associated with the biomass 

enable researches to improve the roughly estimates of greenhouse gas emission 

and also helps the selection of appropriate variables that best model the 

aboveground biomass in savanna-forest transition areas. 

  

Keywords: Geostatistical context. Semivariogram. Remote sensing.  
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FIRST PART 

1 INTRODUCTION 

The Earth's surface and remotely sensed images of that surface have 

distinct spatial properties. Once quantified, these properties can be used for 

many tasks in remote sensing, including image classification, change detection 

and forest inventory estimates. Many methods have potential for the 

quantification of these spatial properties (CURRAN, 1988). Spatial feature 

extraction algorithms are classified into four categories: (1) statistical (grey-level 

co-occurrence matrix – GLCM and semivariogram analysis), (2) geometrical 

(primitive textures), (3) model-based (fractal dimension), and (4) signal 

processing (Fourier transformation and wavelet transformation). A 

semivariogram, that is the primary tool of geostatistics, provides a concise and 

unbiased description of the scale and pattern of spatial variability and can be 

used to investigate and quantify spatial variability. This spatial variability is the 

key to improve remote sensing applications. 

The integration between remote sensing and geostatistical theory was 

consolidated in the late 1980s by various groups that used semivariogram 

analysis to quantify image structure (CURRAN, 1988; WOODCOCK; 

STRAHLER; JUPP, 1988a, 1988b). Many studies have demonstrated that the 

semivariogram has strong potential for heterogeneity analysis (BALAGUER-

BESER et al., 2013; GARRIGUES et al., 2006, 2008; SILVEIRA et al., 2017a), 

image classification of remotely sensed data (ATKINSON; LEWIS, 2000; 

BALAGUER et al., 2010; CHICA-OLMO; ABARCA-HERNÁNDEZ, 2000; 

SILVEIRA et al., 2017b; WU et al., 2015; YUE et al., 2013), change detection 

(ACERBI JUNIOR et al., 2015; GIL-YEPES et al., 2016; SILVEIRA et al., 

2017c, 2018) and to improve forest inventory estimates (SCOLFORO et al., 
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2015). Therefore, the main objective of this thesis was to indicate how the 

geostatistical context could be employed in remote sensing applications. The 

hypotheses were: 

 

1) There is a relationship between landscape heterogeneity and 

measures of spatial dependence from remotely sensed data; 

2) The NDVI (normalized difference vegetation index) and NIR (near-

infrared channel) spatial variability provided by semivariogram 

features from different landscape vegetation cover could be used as 

input data to train a RF (random forest) algorithm, thereby 

improving object-based image classification (indicate image 

classification application).  

3) Land-use/cover changes could be accurately detected using 

geostatistical features, such as semivariogram indices and 

parameters calculated from NDVI images using an object-based 

approach (change detection application). 

4) The geostatistical features obtained at the object level are not 

affected by vegetation seasonality as the NDVI variability captured 

by these indices remains constant in the presence of seasonal 

changes and substantially increases in the presence of forest 

changes (change detection application). 

5) Stratification of inventory plots into forest types could improve the 

precision of aboveground biomass (AGB) estimates using 

regression kriging technique and remote-sensing/spatial-

environmental variables. 

 

Thus, we organized the thesis in seven articles (TABLE 1). In the first 

we evaluated the potential of semivariogram parameters, derived from satellite 
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images with different spatial resolutions, to characterize landscape spatial 

heterogeneity of forested and human modified areas. In the second we studied 

the potential of geostatistical features, derived from medium spatial resolution 

satellite imagery, to characterize contrasted landscape vegetation cover and 

improve object-based image classification. In the third we explored and 

evaluated the performance of semivariogram indices in an object-based 

approach to detect land-cover changes caused by the 2015 dam-collapse disaster 

in Brazil. In the fourth and fifth articles we utilized NDVI derived from 

bitemporal Landsat images obtained during the wet and dry seasons to assess the 

potential of individual geostatistical features and their combination with spectral 

features to accurately detect forest changes, respectively. In the sixth we 

proposed a new method to reduce impact of seasonality for detecting forest 

change from Landsat time series using spatial indices, and in the seventh we 

investigated the potential of data extracted from Landsat TM, MODIS products 

and spatio-environmental variables to map the spatial distribution of 

aboveground biomass (ABG) of six heterogeneous vegetation types in Atlantic 

Forest, Savanna, and Semi-arid woodland Biomes in Minas Gerais State, Brazil.  

The integration between geostatistics and remote sensing (FIGURE 1) is 

presented in the Literature Review Section and the techniques used are presented 

in the articles. The main research questions are presented in Table 2. 
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Figure 1 -  Methodology workflow. RF-random forest; SVM-support vector 

machines; ANN-artificial neural network. 

 

Source: Author (2018). 

 

Table 1 – Articles comprised in this Thesis. 

Nº Title Application 

1 
Characterizing landscape spatial heterogeneity using 

semivariogram parameters derived from NDVI images 

Landscape 

heterogeneity 

2 

Assessment of geostatistical features for object-based 

image classification of contrasted landscape vegetation 

cover 

Image classification 

3 

Object-based change detection using semivariogram 

indices derived from NDVI images: The 

environmental disaster in Mariana, Brazil 

Change detection 

4 

Object-based land cover change detection applied to 

Brazilian seasonal Savannahs using geostatistical 

features 

Change detection 

5 

Disentangling the Effects of Forest Phenology and 

Land-Use Changes in Brazilian Seasonal Biomes 

Combining Spatial and Spectral Remote Sensing 

Features 

Change detection 

6 
Using spatial features to reduce impact of seasonality 

for detecting forest change from Landsat time series 
Change detection 

7 

Stratification improves aboveground biomass 

modeling of Savanna-Forest transition driven by 

satellite images and spatio-environmental data 

Forest Inventory 

Source: Author (2018). 
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Table 2 – Main research questions. AGB-aboveground biomass; NDVI - 

Normalized Difference Vegetation Index 

Questions Article 

How is image spatial resolution linked with the spatial variability of NDVI 

values? Which semivariogram parameter and image spatial resolution is the 

most appropriate to produce a landscape heterogeneity map? 

1 

Combining geostatistical features with spectral data improves the object-

based image classification procedure? 
2 

Are the semivariogram indices derived from Landsat NDVI images able to 

discriminate between homogeneous and heterogeneous pixels within objects? 
3 

Do changes caused by vegetation seasonality affect the spatial variability of 

NDVI values? Are geostatistical features derived from semivariograms able 

to accurately detect land-cover changes? 

4 

How well can we differentiate between seasonal and land-cover changes 

combining spatial and spectral features derived from NDVI Landsat images? 
5 

Are the geostatistical features efficient to eliminate seasonal variations in 

satellite images time series? 
6 

How does the stratification into vegetation types improves the predictive 

quality of AGB random forest model? How do the remote sensing and spatio 

environmental variables are associated with the vegetation types? 

7 

Source: Author (2018). 
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2 LITERATURE REVIEW 

This section reviews geostatistical integration with remote sensing 

applications: image classification, change detection and forest inventory 

estimate (specifically aboveground biomass-AGB). Since the applications 

described depend on the semivariogram (the geostatistical tool), it is introduced 

here briefly. 

The theoretical conception of geostatistics is the Theory of Regionalized 

Variables, proposed by Matheron in 1965, inspired by Wijs (1951) and Krige 

(1951). Matheron (1963) defined Regionalized Variable as a numerical spatial 

function, which varies from one place to another, with an apparent continuity 

and whose variation cannot be represented by a simple mathematical function, 

but by a variogram. According to this theory, the difference in the values of a 

given variable taken at two points in the field depends on the distance between 

them. Thus, the difference between values of an attribute taken at two points 

closest to the space must be smaller than the difference between values taken at 

two distant points. Therefore, each value carries with it a strong interference of 

the values of its neighbourhood, illustrating a spatial continuity (ISAAKS; 

SRIVASTAVA, 1988). 

Some hypotheses of stationarity must be assumed for the 

characterization of a random variable along the space. A variable is stationary if 

the development of the process in time or space occurs homogeneously, with 

continuous random oscillations around an average value, in which both the mean 

amplitude and the oscillations change sharply in time or space. The most 

common are the second-order stationarity and Intrinsic Hypothesis. If the 

mathematical expectation of a random variable is constant, regardless of the 

origin adopted in space or time, it can be said that the variable is stationary of 



16 

 

first order and therefore the average will be the same for the whole process 

according to the intrinsic hypothesis. In the intrinsic hypothesis we have that: 

 

E[Z(x)]=m 

 

Var[Z(x+h)-Z(x)]=E[Z(x+h)-Z(x)2]=2γ(h) 

 

The key to the theory of regionalized variables is the semivariogram. 

This function relates semivariance to spatial separation and provides a concise 

and unbiased description of the scale and pattern of spatial variability. For 

continuous variables, such as reflectance in a given spectral band or vegetation 

indices, the experimental semivariogram is defined as half of the average 

squared difference between values separated by a given lag, where this lag is a 

vector in both distance and direction (ATKINSON; LEWIS, 2000). The 

experimental semivariogram is: 

 

γ(h)=
1

2N(h)
∑[Z(x)-Z(x+h)]2

N(h)

i=1

 

 

where z(x) represents the value of the variable at the location x,  h the separation 

between elements in a given direction, and N (h) the number of data pairs 

occurring at locations x and x + h.  

The semivariance functions are characterized by three parameters: sill 

(σ²), range (Φ), and nugget effect (τ²). The sill parameter is the plateau reached 

by semivariance values and shows the quantity of variation explained by the 

spatial structure of the data. The range parameter is the distance where the 

semivariogram reaches the sill, showing the distance until the data are 

correlated. The nugget effect is the combination of sampling errors and 
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variations that happen in scales smaller than the distance between the sampled 

points (CURRAN, 1988). 

The spatial features provided by the semivariogram can be achieved by 

(FIGURE 2): 

 

a) Modelling the semivariogram by fitting a model to extract 

semivariogram parameters sill (σ²), range (Φ), and nugget effect 

(τ²); 

b) Using the semivariance at various lags γ(1), γ(2), γ(3)….. γ(max). 

It is free of the problems caused by modeling and becomes more 

popular for describing spatial properties of remote sensing image; 

c) Using indices that synthesize the most relevant information about 

the shape of the semivariogram and enhance the spatial information, 

i.e. RVF (Ratio between the values of the total variance and the 

semivariance at first lag) index, that is given by 
γ (max)

γ (1)
.  

 

Figure 2 - Example of a classic semivariogram.  

 
Source: Author (2018). 
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Table 3 indicates the terms used in the description of the semivariogram. 

To obtain both the semivariogram parameters, raw semivariance values and 

semivariogram indices from the images, we can use both pixel-based and object-

based approaches. When using the pixel-based approach it is necessary to define 

a moving window, that is easy to implement, however, it is computational 

expensive (ZHU, 2017), biased along their diagonals and will likely straddle the 

boundary between two landscape features, especially when a large window size 

is used (LALIBERTE; RANGO, 2009). When using the object-based approach, 

these measures are obtained within each individual object, and it is necessary to 

define the lag distance and the number of lags to generate the semivariogram. 

According to Woodcock, Strahler and Jupp (1988a), the lag distance needs to be 

larger than the range of influence in order to characterize the initial part of the 

semivariogram, and large enough to reveal the presence of periodicity.  

 

Table 3- Terms and symbols of the semivariogram curve. 

Term Symbol Definition 

Lag h Separation distance between sample pairs 

Sill σ² Maximum level of γ(h) 

Range φ Maximum distance of spatial dependency 

Nugget effect τ² Independent variance 

Partial sill σ² - τ² Sill minus Nugget effect 

Source: Curran (1988). 

 

Ruiz et al. (2011) presented and described a software application for 

automatic extract descriptive feature from image-objects, FETEX 2.0. The input 

data include a multispectral digital image or single band, such as NDVI and a 

vector file in shapefile format containing the objects. The output file is a table 

that can be produced in four alternative formats, containing a vector of features 

for every object processed. This table of numeric values describing the objects 

from different points of view can be externally used as input data for any 
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classification software. Additionally, several types of graphs and images 

describing the feature extraction procedure are produced, useful for 

interpretation and understanding the process. A test of the processing times is 

included, as well as an application of the program in a real parcel-based 

classification problem, providing some results and analysing the applicability, 

the future improvement of the methodologies, and the use of additional types of 

data sets. This software is intended to be a dynamic tool, integrating further data 

and feature extraction algorithms for the progressive improvement of the 

integration between geostatistics and remote sensing applications.  

2.1 Image classification using the spatial context 

In general, classification accuracies are improved by the use of the 

spatial context. Most classical mathematical algorithms for image classification 

do not consider the spectral dependence existing between a pixel and its 

neighbours, i.e the spatial autocorrelation. In this way, results obtained by using 

both spectral and spatial information can improve image classification results. 

This improvement arises the hypothesis that a pixel is not independent of its 

neighbours and furthermore, this dependence can be quantified and incorporated 

into the classifiers. Figure 4 indicates three different landscape vegetation cover 

(cerrado sensu stricto, deciduous forest and palm swamps) that present different 

spatial variability provided by sill parameter (σ²) computed by NIR (near 

infrared) band. In this example, the σ² semivariogram parameter can be used as 

spatial feature to minimize the inter-class confusion and improve the 

discrimination among these classes (note the sill values of each class). 

The use of semivariogram in image classification was made popular by 

Miranda, Fonseca and Carr (1998) and Miranda, Macdonald and Carr (1992) by 

using semivariogram textural classifiers (STC) using a pixel-based approach to 
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improve the discrimination between land cover types in Borneo and the Amazon 

Forest, Brazil. Chica-Olmo and Abarca-Hernandez (2000), used a set of textural 

measures within a moving window in a Landsat TM image to resolve inter-class 

confusion of indistinct landcover categories. Their results provided significant 

increase in accuracy compared to standard methodologies.  

Balaguer et al. (2010) proposed a comprehensive set of texture features 

extracted from the experimental semivariogram of specific image objects to 

improve image classification of high resolution images.  Fourteen features were 

defined and categorized into three different groups, according to the location of 

their respective parameters in the semivariogram curve. The suitability of the 

proposed features for object-based image classification has been evaluated using 

digital aerial images from an agricultural area on the Mediterranean coast of 

Spain. The performance of the selected semivariogram features has been 

compared with two different sets of texture features: those derived from the grey 

level co-occurrence matrix (GLCM), and the values of raw semivariance directly 

extracted from the semivariogram at different positions. As a result of the tests, 

the classification accuracies obtained using the proposed semivariogram features 

are, in general, higher than those obtained using the other two sets of standard 

texture features. 

Wu et al. (2015) studied an efficient use of semivariogram features for 

object-based high-resolution image classification. First, an input image is 

divided into segments, for each of which a semivariogram is then calculated. 

Second, candidate features are extracted as a number of key locations of the 

semivariogram functions. Then they used an improved Relief algorithm and 

principal component analysis to select independent and significant features. 

Then the selected prominent semivariogram features and the conventional 

spectral features are combined to constitute a feature vector for a support vector 

machine classifier. The effect of such selected semivariogram features is 
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compared with those of the GLCM features and window-based semivariogram 

texture features. Tests with aerial and satellite images show that such selected 

semivariogram features are of a more beneficial supplement to spectral features. 

 

Figure 3 -  Discrimination among (a) cerrado sensu stricto; (b) deciduous forest 

and (c) palm swamps vegetation cover by using the sill parameter 

derived from NIR band obtained by Sentinel 2 images. 

 

Source: Author (2018). 

     

Silveira et al. (2017b) tested the potential of geostatistical features, the 

semivariogram indices proposed by Balaguer et al. (2010), derived from medium 
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spatial resolution satellite imagery to characterize contrasted landscape 

vegetation cover and improve object-based image classification. The study site 

in Brazil included cerrado sensu stricto, deciduous forest, and palm swamp 

vegetation cover. Sentinel 2 and Landsat 8 images were used to test the potential 

of the indices derived from near-infrared (NIR) and normalized difference 

vegetation index (NDVI). The results showed that semivariogram curves were 

efficient to characterize the spatial heterogeneity of the classes analysed, with 

similar results using NIR and NDVI from Sentinel 2 and Landsat 8. Accuracy 

was significantly greater when combining geostatistical features with spectral 

data, suggesting that this method can improve image classification results.  

2.2 Change detection using the spatial context 

Several authors have used the spatial context to extract forest damage 

and detect land-use/cover (LULC) changes. Sertel, Kaya and Curran (2007) 

investigated the relationship between semivariogram metrics and degree of 

earthquake damage. They concluded that in in severely damaged areas, the 

earthquake caused large spatial variations that were quantified by the 

semivariogram variables of range, nugget, and sill. The range captured coarse-

scale spatial variability, the nugget captured fine-scale spatial variability, and the 

sill captured overall variability in the landscape.  

Costantini et al. (2012) tested the hypothesis of existence of a 

relationship between the vegetation spatial heterogeneity and the 

occurrence/spread of disturbance events, integrating the change detection and 

spatial analyses of the NDVI in forested areas. They combined techniques of 

remote sensing, geostatistics and landscape ecology in mixed forests to propose 

the range of semivariogram as a simple indirect estimator of this susceptibility of 

forests. 
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Acerbi Junior et al. (2015) analysed the potential of semivariograms 

generated from the NDVI values, derived from Landsat TM images, to detect 

changes in an area covered by Brazilian savanna’s vegetation. This study had 

demonstrated the usefulness of semivariogram shape and parameters to detect 

deforestation. In deforested areas, the landscape change has caused spatial 

variations that were quantified by the semivariogram parameters of range, sill 

and shape. The range and sill were the two most important and complementary 

parameters. Both increased their values after deforestation and remain similar if 

the land cover had not been changed. 

Gil-Yepes et al. (2016) proposed and evaluated a set of new temporal 

features based on geostatistics functions that relate the spatial distribution of the 

elements within agricultural parcels at two different dates. They concluded that 

the new set of features extracted from cross-semivariogram are suitable change 

indicators when changes affect the heterogeneity of the elements within objects, 

having in this cases a high discrimination power between change and no change 

class. Furthermore, by combining spectral features with cross-semivariogram, 

higher accuracies were achieved and confusion between classes was reduced. 

Hamunyela, Verbesselt and Herold (2016) published the manuscript 

“Using spatial context to improve early detection of deforestation from Landsat 

time series”. They proposed a new approach that reduces seasonality in satellite 

image time series using spatial context, with a spatial moving window to 

calculate a medium value of Landsat NDVI time series, and a spatial moving 

window (defined spatial neighbourhood) to calculate a medium value that is 

divide by the value of the focal pixel resulting into a spatially normalised time 

series. The assumption was: if no disturbance has occurred, the forest at the 

focal pixel would exhibit temporal dynamics similar to that of forest pixels 

within its neighbourhood. Dividing the value of the focal pixel with median 

value of its neighbours would yield a value closer to one if no disturbance has 
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occurred or if the disturbance is regional. When the focal pixel becomes 

disturbed and the disturbance is local, dividing the value of the focal pixel by the 

median value calculated from pixels in the neighbourhood, is likely to amplify 

the impact of the disturbance on the time series.  

The authors demonstrated that the spatial context is a useful approach 

for timely detection of deforestation events in areas where forests exhibit strong 

seasonality. However, as they used a pixel-based approach that requires a 

moving window, the selection of the appropriate window size is necessary, and 

also, it is biased along their diagonals and will likely straddle the boundary 

between two landscape features, especially when a large window size is used 

(LALIBERTE; RANGO, 2009), implying in limitations.  

Recently Silveira et al. (2018) proposed a method to minimize the 

effects of forest phenology on forest change detection, exploiting the spatial 

context, represented by geostatistical features, using bitemporal Landsat NDVI 

images and an object-based approach. The study findings indicated that using 

the geostatistical context it is possible to use bitemporal NDVI images to 

address the challenge of accurately detecting forest changes, eliminating the 

effects of forest phenology, without the need to use a dense time series of remote 

sensing images. 

2.3 Aboveground biomass modelling using remote sensing 

In recent years remote sensing techniques have become prevalent in 

estimating aboveground biomass (AGB). The advantages of remotely sensed 

data, such as in repetitivity of data collection, a synoptic view, a digital format 

that allows fast processing of large quantities of data, and the high correlations 

between spectral bands and vegetation parameters, make it the primary source 

for large area AGB estimation, especially in areas of difficult access (LU, 2006). 
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Although remotely sensed observations do not directly measure biomass, the 

radiometry is sensitive to vegetation structure (crown size and tree density), 

texture and shadow, which are correlated with AGB, particularly in the short 

wave infrared bands (BACCINI et al., 2008). 

This has been mainly achieved by the use of vegetation indices such as 

the normalized difference vegetation index (NDVI). The main problem 

associated with indices computed from multispectral sensors is that they reach a 

saturation level on high density biomass estimation (CHEN et al., 2009). NDVI 

calculated from broad band sensors, asymptotically approach a saturation level 

after a certain AGB of about 0.3 g cm−1 (HURCOM; HARRISON, 1998) or 

vegetation age of about 15 years in tropical forests (STEININGER, 2000). 

Therefore, NDVI yields poor estimates during peak growing seasons and in 

more densely vegetated areas (THENKABAIL et al., 2004). 

High-spatial resolution data from both airborne and satellite platforms 

can provide accurate aboveground biomass estimates at local scales; however, 

for regional scales, a large volume of data is required, which is not only 

expensive, but also difficult to process; this limits its application for larger areas. 

Landsat TM data have been found more effective for AGB estimation at a 

regional scale, however, mixed pixels and data saturation problems have been 

reported with these data in biomass estimation for complex environments. At the 

national and global scales, coarse-spatial resolution data, such as AVHRR or 

MODIS, have been found useful in AGB estimation, however, the data have not 

been used much because of the difficulty in linking coarse-spatial resolution data 

and field measurement (KUMAR et al., 2015). 

Baccini et al. (2008) described methods to map aboveground biomass 

over tropical Africa using multi-year MODIS satellite observations and a wide 

range of field measurements. The results indicated that the MODIS data sets 
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captured the amount and spatial distribution of aboveground biomass across 

tropical Africa.  

Mutanga, Adam and Cho (2012) evaluated the performance of data 

extracted from WorldView-2 imagery to estimate biomass in the South Africa. 

The major conclusion was that the NDVI extracted from WorldVeiw-2 can be 

used to model and predict wetland biomass in a high density and vegetated 

wetland. The NDVI involving the additional spectral bands 2, such as the red-

edge and near infrared regions of the electromagnetic spectrum, improved the 

prediction accuracy compared with the traditional NDVIs. 

 Basuki et al. (2013) proposed an approach to quantification of AGB by 

integrating phased array L-band synthetic aperture radar (PALSAR) with 

Landsat-7 ETM+. The proposed model showed the potential use of the 

integration of radar and optical imagery increasing the estimation accuracy of 

AGB in mixed forests.  

Latifi et al. (2015) explored the question of stratification the sampling 

units into major forest types to improve the predictive quality of forest biomass 

modeling using LiDAR (light detection and ranging) and hyperspectral data. The 

results indicated that the sensor type (hyperspectral/LiDAR) showed to be the 

essential source of impact on the yielded predictive performance of the models 

and the based on forest strata did show slight improvements over the use of 

unstratified models. 

Fayad et al. (2016) proposed a calibrated regression model to map the 

AGB by using LiDAR, SAR, optical and environmental data. The goals were to 

decrease the bias and increase the precision of the AGB estimates (which can be 

linked to the saturation of the radar and optical data) using GLAS data that are 

freely accessible and globally available but with sparse, and inhomogeneous 

coverage. They used the regression kriging technique with the random forest 

algorithm, that allowed to achieve the best precision for the AGB estimates. 
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A review of various remote sensing applications (optical, hyperspectral, 

and active remote sensing) in forest aboveground biomass inventorying and 

monitoring was conducted by Timothy et al. (2016). The review concluded that 

the use of remote sensing in large-scale forest aboveground biomass 

quantification provides plausible alternatives, when compared to the use of 

conventional approaches, which are laborious costly, and time-intensive and 

sometimes inapplicable due to poor accessibility. It was noted that although 

remote sensing provides reasonably accurate forest aboveground biomass 

estimates, active sensors, such as LiDAR and radar are not fully operational as 

yet due to complex pre-processing and high cost of data acquisition. They also 

concluded that more research is needed on the application of remote sensing for 

estimating the AGB. 
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3 FINAL CONSIDERATIONS 

We recommend the integration between geostatistical techniques applied 

to image classification, change detection and biomass estimate. The general 

conclusions were: 

 

a) There is a relationship between landscape heterogeneity and measures 

of spatial dependence from remotely sensed data; Image spatial 

resolution does in fact influence the sill and range parameters and, 

medium spatial resolutions are the most appropriate to derive indicators 

of landscape heterogeneity; 

b) The semivariogram curves obtained by NDVI and NIR generated from 

Sentinel 2 and Landsat 8 were efficient for characterizing spatial 

heterogeneity within contrasting landscape vegetation cover, such as 

cerrado sensu stricto, deciduous forests and palm swamps; The image 

classification accuracy was significantly improved by combining 

geostatistical features with spectral data, thereby supporting the use of 

the semivariogram indices to improve object-based image classification 

procedures; 

c) Land-use/cover changes can be accurately detected using only 

semivariogram indices obtained by semivariograms derived from 

Landsat NDVI images, due to the NDVI spatial variability have the 

potential to discriminate between homogeneous and heterogeneous 

pixels within objects; 

d) The spatial variability of NDVI values, represented by geostatistical 

features (most of the semivariogram indices and sill parameter) are not 

affected by vegetation seasonality, and therefore, are able to accurately 

detect land-use/cover changes in an object level, disregarding those 
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associated with forest phenology, resulting in fewer classification errors, 

without the need to use a dense time series of remote sensing images; 

e) The combination of spectral features and semivariogram indices derived 

from Landsat NDVI times series provides the best results do 

disentangling the effects of forest phenology and land-use/cover 

changes in seasonal biomes, underscoring the use of spatial features to 

reduce the need of multi-temporal satellite images to accurately extract 

land use/cover changes such as deforestation, logging or fire while 

disregarding the ones caused by phenological differences; 

f) The NDVI spatial variability, captured by AFM semivariogram index is 

not affected by vegetation seasonality, and therefore, can produce times 

series that accurately differentiate land-use/cover changes from seasonal 

changes, resulting in fewer classification errors; 

g) The spatial context approach is useful for the detection of deforestation 

and fires events using NDVI Landsat data in areas where forests exhibit 

strong seasonality, addressing the challenge of accurately detecting 

land-use/cover changes, eliminating the effects of forest phenology, 

without the need of using de-seasoning models; 

h) The stratification of data into vegetation types not only improved the 

accuracy of aboveground biomass estimative, but also allowed random 

forest regression to select the lowest number of variables that offer the 

best predictive model performance to AGB mapping. The improvement 

in AGB estimates is driven by the spatial distribution and seasonality 

effects of each vegetation type, and it is achieved by stratifying the 

models which minimize the Savanna-Forest transition heterogeneity. 
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Abstract. Assuming a relationship between landscape heterogeneity and 

measures of spatial dependence by using remotely sensed data, the aim of this 

work was to evaluate the potential of semivariogram parameters, derived from 

satellite images with different spatial resolutions, to characterize landscape 

spatial heterogeneity of forested and human modified areas. The NDVI 

(Normalized Difference Vegetation Index) was generated in an area of Brazilian 

amazon tropical forest (1,000 km²). We selected samples (1 x 1 km) from 

forested and human modified areas distributed throughout the study area, to 

generate the semivariogram and extract the sill (σ²-overall spatial variability of 

the surface property) and range (φ-the length scale of the spatial structures of 

objects) parameters. The analysis revealed that image resolution influenced the 

sill and range parameters. The average sill and range values increase from 

forested to human modified areas and the greatest between-class variation was 

found for LANDSAT 8 imagery, indicating that this image resolution is the most 

appropriate for deriving sill and range parameters with the intention of 

describing landscape spatial heterogeneity. By combining remote sensing and 

geostatistical techniques, we have shown that the sill and range parameters of 

semivariograms derived from NDVI images are a simple indicator of landscape 

heterogeneity and can be used to provide landscape heterogeneity maps to 

enable researchers to design appropriate sampling regimes. In the future, more 

applications combining remote sensing and geostatistical features should be 

further investigated and developed, such as change detection and image 

classification using object-based image analysis (OBIA) approaches.  

 

Key words: remote sensing, geostatistics, forested areas, human-modified 

landscapes. 
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Introduction 

 Recent years have seen a dramatic increase in the attention being given 

to the condition of tropical forests. In recognition of the considerable impact 

human activities are having on tropical forest systems, a range of initiatives have 

been launched to mitigate the adverse effects of tropical forest loss (DEVRIES 

et al., 2016). Remote sensing based approaches play a key role in forest 

monitoring, as they are of low cost and provide an opportunity for mapping 

forest change over large areas (DEVRIES et al., 2015).  

 Understanding the negative and positive effects of agricultural land use 

for the conservation of biodiversity, and its relation to ecosystem services, needs 

a landscape perspective (TSCHRNTKE et al., 2005). Landscapes exhibit various 

degrees of spatial heterogeneity due to the interactions of natural and 

anthropogenic processes (BIE et al., 2012).  

 Remote sensing using satellite imagery has emerged as a key geospatial 

tool to meet the growing information needs of landscape and forest managers 

(COSTANTINI et al., 2012). Different methods to quantify changes in 

landscape complexity have been developed in the last few decades (WU, 2013). 

Most of these involve the use of remotely sensed images and geospatial 

techniques (MONMANY et al., 2015; BERBEROGLU et al., 2000; 

BERBEROGLU; AKIN, 2009; GARCIA-PEDRERO et al., 2015). Several 

works have investigated environmental changes, using spatial heterogeneity 

derived from various types of remote sensing data (WU et al., 2000; CHEN; 

HENEBRY, 2009; FENG et al., 2010). A reasonably number of studies have 

focused on the variation of spatial heterogeneity (WEN et al., 2012) using multi-

scale remote sensing data (CHEN; HENEBRY, 2009).  

 In some studies, the Normalized Difference Vegetation Index (NDVI) 

has been used to detect and analyse spatial heterogeneity using semivariograms 

(GARRIGUES et al., 2006; GARRIGUES et al., 2008; BALAGUER-BESER et 
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al., 2013). NDVI, which represents an especially informative vector for 

landscape structure and temporal change analyses (GRIFFITH et al., 2002), has 

been used in numerous studies of vegetation dynamics because of its simplicity 

and close relationship to variables of ecological interest such as land cover 

change and disturbance propagation at multiple scales (ZURLINI et al., 2006; 

ZACCARELLI et al., 2008). 

 Geostatistical semivariograms are used as measures of texture 

(CURRAN, 1988; WOODCOCK; et al., 1988) and have been widely used for 

heterogeneity analysis (GARRIGUES et al., 2006, 2008; CADENASSO et al., 

2007; HUANG et al., 2013;LAUSCH et al., 2013; BALAGUER-BESER et al., 

2013; WU et al., 2000; QIU et al., 2013), improved image classification 

(BALAGUER et al., 2010;BALAGUER-BESER et al., 2011; WU et al., 2015; 

YUE et al., 2013; POWERS et al., 2015) and change detection (SERTEL et al., 

2007; COSTANTINI et al., 2012; ACERBI JUNIOR et al., 2015; GIL-YEPES 

et al., 2016). In short, the spatial heterogeneity of surface reflectance values is 

dependent on the spatial resolution of the image, spectral bands and the size of 

the image or sample analysed.  

 Sampling heterogeneity in a statistically robust manner has proven to be 

a challenge, with researchers often stratifying their sampling regimes along 

subjectively chosen landscape features (WHITE et al., 2004). Sampling regimes 

can be improved by an initial estimate of the spatial heterogeneity, provided by 

an accurate map of landscape heterogeneity. The mosaics of land use and land 

cover appear with boundaries and edges between them and this variability can be 

captured and extracted by using the spatial variability of remote sensing images 

using geostatistical approaches (GUARRIGUES et al., 2006). 

 Semivariograms are reportedly an efficient method to characterize the 

structure of spatial continuity (GUEDES et al. 2015), due to their potential to 

describe the spatial variability of data.  Therefore, assuming a relationship 
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between landscape heterogeneity and measures of spatial dependence of 

remotely sensed data, the aim of this work was to evaluate the potential of 

semivariogram parameters, derived from satellite images with different spatial 

resolutions, to characterize landscape spatial heterogeneity of forested and 

human modified areas. The questions that motived this study were: (i) How is 

image spatial resolution linked with the spatial variability of NDVI values? (ii) 

Which semivariogram parameter and image spatial resolution is the most 

appropriate to produce a landscape heterogeneity map? 

 This manuscript makes a significant contribution to the understanding of 

how the manipulation of satellite imagery parameters can be used to detect 

variation in the landscape, indicating the most appropriate image spatial 

resolution to improve the analysis and also the most appropriate semivariogram 

parameter to generate a map of landscape heterogeneity. This enables 

researchers to design appropriate sampling regimes to capture landscape 

heterogeneity. 

 

Material and Methods 

 We performed three mains steps: (1) Acquisition of SPOT 6 (Satellite 

Pour l'Observation de la Terre), LANDSAT 8 (Land Remote Sensing Satellite) 

and MODIS TERRA (Moderate Resolution Imaging Spectroradiometer) 

imagery and generation of NDVI images; (2) Stratified sampling of forested and 

human modified areas distributed throughout the study area; (3) Analysis of 

semivariograms generation using the NDVI pixels inside the samples. The sill 

(σ²-overall spatial variability of the surface property) and range (φ-the length 

scale of the spatial structures of objects or patches) parameters were generated 

by fitting mathematical models (exponential, spherical and gaussian) to the 

experimental semivariograms using the weighted least squares method. Figure 1 

presents a diagrammatical overview of the methods. 
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Figure 1. Diagrammatical overview of methods divided into three main steps. 

 

Study area 

 The study area is a total of 1,000 km² set within the Cotriguaçu 

municipality, located in the northeast of the state of Mato Grosso (MT), Brazil, 

central coordinates 09° 48' 9.14'' south latitude and 58° 47' 40.25'' west longitude 

(Figure 2).  
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Figure 2. Location of the study area in the municipality of Cotriguaçu, Mato 

Grosso (MT) State, Brazil. 

 

 The municipality of Cotriguaçu, which has a total area of 9,149 km², 

forms part of the Amazon Watershed and is drained by the Juruena River, the 

largest volume of water in Mato Grosso State. A total of 25% of its landmass 

has a flat relief, 60% has an irregular relief and 15% has a mountainous relief. 

The municipality has a mean altitude of 240 meters. This region has a warm and 

humid equatorial climate with two dry months (June and July). The mean annual 

rainfall is 2,750 mm, with low rainfall from May to September (period in which 

the majority of logging occurs) and high precipitation from January to March. 

Average annual temperatures ranges from 22ºC to 35ºC (FINGER, 2005).  

 Timber is the main commodity and the forested areas are characterized 

by a wide diversity of valuable tropical species. By 2004 Cotriguaçu had lost 

13% of its forest cover. Extensive livestock farming is the main reason for 

conversion of forest areas in this region. The wood poles located in the Amazon 
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are established from an economy based exclusively on forestry, on which the 

local residents depend for socio-economic development. These municipalities 

are the most susceptible to the effects of predatory exploitation of natural 

resources. Cotriguaçu is undergoing expansion with excessive pressure on 

natural resources (FERREIRA et al., 2005). 

 

Image acquisition  

 We used images with three different spatial resolutions to assess the 

effect of spatial resolution on the semivariogram parameters generated from 

NDVI images (Table 1). The SPOT 6 image was provided by ONF (Office 

National des Forêts) Brazil, a Brazilian Forestry Company, subsidiary of ONF 

International, a company of the ONF group, leading a reforestation pilot project 

for carbon sequestration "Peugeot-ONF carbon sink" in the northwest of Mato 

Grosso.  

 The LANDSAT 8 and MODIS TERRA images were acquired from the 

United States Geological Survey for Earth Observation and Science 

(USGS\EROS). The LANDSAT 8 image was acquired in the CDR processing 

level (Landsat Surface Reflectance Climate Data Record), that is, with the 

necessary geometric corrections and reflectance values at ground level. The 

MODIS product used was MOD13Q1 - Vegetation Index. 

 

Table 1. Acquisition dates and spatial resolution of SPOT 6, LANDSAT 8 and 

MODIS TERRA images.  

Images Acquisition date Spatial resolution (m) 

SPOT 6 09/July/2014 6 

LANDSAT 8 09/August/2014 30 

MODIS TERRA 10/August/2014 250 
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 NDVI was used to describe the spatial heterogeneity of vegetation 

cover. This index is based on quotients and uses red spectral and near infrared 

bands to enhance vegetation and, at the same time, minimize the effects of 

shadows caused by topography (VOROVENCII, 2014). Although NDVI is 

sensitive to soil and atmospheric effects, it is a good indicator of the total 

amount of vegetation (HENEBRY, 1993) and is considered important for the 

analysis of land cover structure and temporal changes (GRIFFITH et al., 2002; 

SADER, 2003). 

 

Sampling design 

 According to a previous map provided by ONF Brazil in 2014, the study 

area comprises six land use/land cover (LULC) classes: croplands, degraded 

forests, forests, plantation, settlements and water. We merged these LULC into 

two classes: (1) Forested areas and (2) Human modified areas (Figure 3). 

Forested areas are densely tropical rainforest, that have not undergone 

major changes due to human activities and present only on patch covering the 

total grid area.  

Human modified areas are croplands, settlements, degraded forests and 

plantations, with more than one patch in the grid. The cropland class is 

composed of small farm plots around villages and in forest edges (agroforest 

mosaics), as well as more intensive subsistence agricultural use (large permanent 

plots). Towns, villages and other human infrastructures were classified as 

‘settlements’. The water class is composed of rivers and open water surfaces.  

Degraded forest and saplings were designed to identify areas with significant 

tree density (typically tree cover in the order of 25 to 35%). The plantation class 

is composed of tree plantations. 

 We selected 20 square samples (1 x 1 km) using a stratified sampling 

approach (Figure 3), comprising 10 samples of human modified areas and 10 
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samples of forested areas in each image, totalizing 60 samples. We then 

extracted all the NDVI values from the SPOT 6, LANDSAT 8 and MODIS 

TERRA pixels inside the sampled areas. 

 

Figure 3. Sampling design in forest and human modified areas. 

 

Semivariogram parameters 

 The semivariogram is a graphical representation of the spatial variability 

in a given set of data (COHEN et al., 1990).  The relationship between a pair of 

pixels can be calculated with the variogram function (Equation 1), called 2γ (h), 

which corresponds to the mathematical expectation of the squared difference 

between pairs of points separated by a distance h, where Z (x) is the value of the 

regionalized variable at point x, Z (x + h) is the value at x + h. The 

semivariogram function depends on the location x, and the distance between 

samples h. For the variogram to be based solely on the distance between the 

sampling units, it is necessary to adopt the intrinsic hypothesis (stationarity), 

which implies that the variance of the differences between two sample points 
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depends only on the distance (h). 

 

2γ(h)=E{[Z(x)-Z(x+h)]2}                                            (1) 

 For continuous variables, such as the NDVI, the experimental 

semivariogram is defined as the half of the average squared difference between 

values separated by a given lag, where this lag is a vector in both distance and 

direction (ATKINSON; LEWIS, 2000). It was estimated using equation 2: 

 

γ(h)=
1

2N(h)
∑ [Z(x)-Z(x+h)]2N(h)

i=1                                     (2) 

 

Where γ (h) is the estimator of the semivariance for each distance h, 

N(h) is the number of pairs of points separated by the distance h, Z(x) is the 

value of the regionalized variable at point x and Z(x+h) is the value of the point 

x+h. 

 Spatial variance versus distance h, is the graphical representation of the 

semivariogram, which allows obtaining an estimate of the variance value for 

different combinations of pairs of points. The semivariogram (Figure 4) is 

characterized by three parameters: sill (σ²), range (φ) and nugget effect (τ²). The 

sill parameter is the plateau reached by the semivariance values and shows the 

quantity of variation explained by the spatial structure of the data. The range 

parameter is the distance at which the semivariogram reaches the sill, showing 

the distance at which the data cease to be correlated. The nugget effect is the 

combination of sampling errors and variations that happen at scales smaller than 

the distance between the sampled points (CURRAN, 1988).  



48 

 

 

Figure 4. Illustration of a classical semivariogram: σ² - sill; (φ) range and (τ²) 

nugget effect. 

 

 We generate the semivariograms using the NDVI values extracted from 

the square samples in the SPOT 6, LANDSAT 8 and MODIS images. The size 

of the samples needs to be larger than the range of influence to characterize the 

initial part of the semivariogram and large enough to reveal the presence of 

periodicity (WOODCOCK et al., 1988).  

 Geostatistical methods are optimal when data are normally distributed 

and stationary (mean and variance do not vary significantly in space). 

Significant deviations from normality and stationarity can cause problems, so it 

is always best to begin by looking at a histogram to check for normality and a 

plotting of the data values in space to check for significant trends. 

 Thus, the first step was an exploratory data analysis in order to 

understand the overall behaviour of NDVI values, i.e. to study the tendency, 

shape and distribution of the data. The position measures (average, minimum 

and maximum values), dispersion (standard deviation and coefficient of 

variation) and normality assessment were determined through the frequency 

histogram. In addition, to verify the presence of outliers, a boxplot graph was 
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generated. After the exploratory analysis, the semivariograms were generated to 

analyse the spatial dependence of the data. 

 Theoretical semivariograms were estimated by fitting mathematical 

models to the experimental semivariogram using the weighted least squares 

method. Exponential, spherical and gaussian models were tested (Table 2). The 

fitted models were cross-validated, analysing the reduced mean error (ER) and 

the standard deviation of reduced errors (SRE). We used R (R Core Team 2016) 

and ArcGis version 10.1 (Esri 2010) to perform this analysis. 

 

Table 2. Semivariogram models. 

Model Formula 

Exponential γ(h)=σ² ⌈1-e
[-3(

h
φ

)]
⌉ 

Spherical γ(h)= {σ² [
3

2
(

h

φ
) -

1

2
(

h

φ
)

3

]} 

Gaussian γ(h)=σ² ⌈1-e
[-3(

h
φ

)
2

]
⌉ 

γ(h) =semivariance; h =distance; σ²=sill and φ=range.  

 

Results and discussion 

Exploratory analysis 

 The distribution of NDVI data was found not to deviate from normality. 

The distribution of latitude and longitude values showed that the data do not 

have any spatial tendencies, and the spatial dependence can be explained only by 

the distance among the samples for all images, assuming the intrinsic hypothesis 

of stationarity. 

 The descriptive analysis of NDVI values inside samples (Table 3) 

showed that the average NDVI values for the forested areas were 0.48 for the 

SPOT 6 image, 0.43 for the LANDSAT 8 image and 0.86 for the MODIS 
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TERRA image. For the human modified samples, the average NDVI values 

were 0.39, 0.29 and 0.59, respectively. Thus, as the spatial resolution decreases 

(from 6 to 250 m), the average NDVI values between the classes increases, 

showing that the NDVI values between the land-use classes are more similar, 

using high resolution images (i.e. SPOT 6). 

 For forested and human modified areas, the minimum NDVI values 

were obtained from samples of the SPOT 6 image; this is probably due to the 

presence of shadows that are captured by high resolution images, causing a 

reduction in NDVI values. The maximum values for these classes, were 

provided by MODIS TERRA, reaching 0.90.  

 

Table 3. Descriptive statistics. 

Image Samples 
Forested areas Human modified areas 

Min Mean Max Std Min Mean Max Std 

SPOT 6 

1 0.12 0.51 0.69 0.06 -0.30 0.35 0.64 0.07 

2 0.09 0.48 0.65 0.07 -0.12 0.44 0.67 0.07 

3 0.00 0.49 0.67 0.06 -0.45 0.41 0.60 0.10 

4 0.11 0.47 0.65 0.06 -0.25 0.37 0.64 0.07 

5 0.12 0.47 0.67 0.06 -0.25 0.38 0.62 0.08 

6 0.11 0.49 0.68 0.06 -0.44 0.41 0.61 0.08 

7 0.10 0.47 0.65 0.06 0.12 0.45 0.63 0.08 

8 0.04 0.47 0.64 0.06 -0.47 0.38 0.63 0.09 

9 0.06 0.48 0.66 0.07 -0.12 0.38 0.64 0.07 

10 0.07 0.48 0.66 0.07 0.14 0.38 0.66 0.08 

Average 0.08 0.48 0.66 0.06 -0.21 0.39 0.63 0.08 

LANDSAT 8 

1 0.37 0.44 0.53 0.02 0.16 0.25 0.46 0.06 

2 0.33 0.42 0.49 0.02 0.19 0.31 0.48 0.08 

3 0.36 0.43 0.50 0.02 0.01 0.28 0.47 0.07 

4 0.35 0.42 0.48 0.02 0.16 0.27 0.48 0.07 

5 0.36 0.42 0.49 0.02 0.11 0.27 0.46 0.07 

6 0.34 0.43 0.50 0.02 0.04 0.31 0.47 0.08 
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7 0.36 0.43 0.50 0.02 0.23 0.37 0.50 0.06 

8 0.33 0.42 0.50 0.02 0.00 0.25 0.47 0.06 

9 0.36 0.43 0.50 0.02 0.18 0.29 0.48 0.07 

10 0.35 0.44 0.50 0.02 0.19 0.31 0.52 0.07 

Average 0.35 0.43 0.50 0.02 0.13 0.29 0.48 0.07 

MODIS 

TERRA 

1 0.88 0.89 0.90 0.01 0.41 0.55 0.80 0.08 

2 0.84 0.85 0.89 0.02 0.43 0.56 0.70 0.08 

3 0.86 0.87 0.88 0.00 0.64 0.69 0.71 0.02 

4 0.72 0.85 0.88 0.05 0.49 0.58 0.68 0.05 

5 0.67 0.84 0.88 0.05 0.38 0.48 0.62 0.08 

6 0.82 0.86 0.86 0.01 0.46 0.63 0.79 0.09 

7 0.85 0.86 0.87 0.01 0.59 0.67 0.76 0.06 

8 0.75 0.83 0.89 0.04 0.34 0.55 0.75 0.17 

9 0.86 0.87 0.88 0.01 0.49 0.61 0.73 0.08 

10 0.84 0.87 0.88 0.01 0.55 0.60 0.69 0.04 

Average 0.81 0.86 0.88 0.02 0.48 0.59 0.72 0.08 

Min=minimum; Max=maximum; Std=standard deviation. 

 

Semivariogram analysis 

 The semivariograms reached the sill within the calculated distance 

(Figure 5), indicating that their spatial extents were sufficiently large to 

encompass the entire spatial variability. The Gaussian model provided the best 

fit for the data. The cross-validated models, showed values close to 0 (~ 0.0005) 

for ER and close to 1 (~ 1.11) for SRE.  
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Figure 5. Example semivariogram curves for: (a) forested NDVI values of SPOT 

6; (b) forested NDVI values of LANDSAT 8; (c) forested NDVI values of 

MODIS TERRA; (d) human modified NDVI values of SPOT 6; (e) human 

modified NDVI values of LANDSAT 8; (f) human modified NDVI values of 

MODIS TERRA. Dashed lines illustrate the σ² (sill) and φ (range) parameters. 

 

 We analysed the semivariogram parameters obtained from SPOT 6, 

LANDSAT 8 and MODIS TERRA in both classes (Table 4). The spatial 

variability of each image, represented by the sill (σ²) parameter increases 

considerably from forested to human modified areas. The sill (σ²) parameter 

indicates the amount of variance explained by the spatial structure. 

GARRIGUES et al. (2006) found that forested areas have a low sill values 

because the important development of vegetation and the presence of green 

understory limit the variability of the landscape vegetation cover. The high 

variability of human modified areas is explained by the mosaic of vegetation 

with high NDVI values and bare soil and pastures with low NDVI values. The 

highest sill value was found in the human modified areas using SPOT 6 (0.0064) 

and the lowest was found in forested areas using MODIS TERRA (0.0001). 
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 The average range (φ) also increases from forested to human modified 

areas.  The range parameter obtained from satellite images is the ratio of the area 

covered by the dominant objects (TREITZ, 2000). In forested areas, the range 

(φ) represents the size of the largest elements, which are the tree crowns of the 

forest canopy. On the other hand, in human modified areas, the dominant objects 

will vary according to the land cover classes present in the samples. Using 

SPOT 6, the sill values of forested areas reach the overall image variance at a 

short range (22 m), indicating that this class is poorly structured at the 

observational scale. The nugget effect is high, representing variability at 

distances smaller than the sample spacing (1 pixel).  The greatest range was 

found in human modified areas using MODIS TERRA (600 m).  The 

semivariogram range can be used to quantify coarse spatial variability since it 

increases as a result of changes in land-use throughout the landscape (SERTEL 

et al. 2007). 

 ACERBI JUNIOR et al. (2015) analysed semivariogram parameters to 

detect changes in a Brazilian savanna biome using NDVI LANDSAT TM 

images. They showed that sill and range semivariogram parameters were 

different when deforestation occurred and were similar when the area had not 

been changed. 

 

Table 4. Average semivariogram parameters obtained from 20 samples. 

Image Semivariogram parameters Forested Human Modified  Variation 

SPOT 6 
σ² 0.0039 0.0064 0.0025 

Φ 22 338 316 

LANDSAT 

8 

σ² 0.0004 0.0053 0.0049 

Φ 70 400 330 

MODIS 

TERRA 

σ² 0.0001 0.0043 0.0042 

Φ 585 600 15 

σ²=sill; φ=range.  



54 

 

 The sill and range semivariogram parameters extracted from NDVI 

images are affected by image spatial resolution. Images with high spatial 

resolution have lower internal intra-pixel variability and high inter-pixel 

variability. This inter-pixel variability is linked with the sill and range 

parameters and is affected by the LULC classes. As image spatial resolution 

decreases, inter-pixel variability also decreases (Figure 6). Low inter-pixel 

variability provides low sill values and high range values, meaning that NDVI 

SPOT 6 should provide higher sill and lower range values than LANDSAT 8 

and MODIS TERRA. For forested areas, this pattern is more pronounced than in 

human modified areas. 

 To select the most appropriate semivariogram parameter and image 

spatial resolution we analysed which one provided the greatest variation between 

the LULC classes. The variation of sill and range values between the classes 

increases between SPOT 6 (0.0025-316) and LANDSAT 8 (0.0049-330) and 

decreases from LANDSAT 8 to MODIS TERRA (0.0042-15).  

 In the SPOT 6 image, the variation in sill values between the LULC 

classes is low and the variation in range values is high. SPOT 6 images have 

high spatial resolution (6 meters), and the largest elements in forested areas are 

the tree crown shadows. The high NDVI values of trees and low values of 

shadows increase the overall variability captured by the sill semivariogram 

parameter, making the sill values of forested areas as high as the sill values of 

human modified areas. The range parameter is low in forested areas due to the 

size of the elements also being low. In human modified areas, the overall 

variability is influenced by the type of landscape (bare soil, plantation, pasture 

and cropland), presenting high range values, thus increasing the variation in 

range values between the classes. 



55 

 

 In the LANDSAT 8 images, the sill and range present a high variation 

between the LULC classes. MODIS TERRA presents a high variation in sill 

values and low variation in range values. 

 

Figure 6. Effect of image resolution on sill (σ²) and range (φ) parameters for the 

characterization of landscape spatial heterogeneity: (a) Forest areas and (b) 

Human modified areas. 

 

 The spatial heterogeneity between the LULC classes follows the same 

pattern using the semivariogram parameters obtained from three different image 

spatial resolutions. The sill (σ²) and range (φ) parameters increase from forested 

to human modified areas. This increase is more pronounced using medium 

spatial resolution images (Landsat – 30 m). 

 The semivariogram parameters were efficient at describing landscape 

spatial heterogeneity, being able to distinguish the analysed classes. LANDSAT 

8 showed the greatest differentiation of land cover classes with the sill and range 

parameters. We advise using both sill and range parameters derived from NDVI 
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LANDSAT images to identify forested and human modified areas, to capture the 

landscape heterogeneity. 

 

Conclusions 

 We have evaluated the potential of semivariogram parameters derived 

from NDVI images to describe landscape spatial heterogeneity of forested and 

human modified areas.  

 Our analyses have revealed that image resolution does in fact influence 

the sill and range parameters. Average sill and range values increased from 

forested to human modified areas at the three image spatial resolutions analysed, 

however the greatest between-class variation was provided by LANDSAT 8 

imagery, indicating that medium spatial resolution is the most appropriate for 

deriving the sill and range parameters with the intention of capture and map the 

landscape spatial heterogeneity. 

 By combining remote sensing and geostatistical techniques, we have 

shown that the sill and range parameters of semivariograms derived from NDVI 

images are a simple indicator of landscape heterogeneity and can be used to 

provide landscape heterogeneity maps to enable researchers to design 

appropriate sampling regimes. In the future, more applications combining 

remote sensing and geostatistical features should be further investigated and 

developed, such as change detection and image classification using object-based 

image analysis (OBIA) approaches. 

Acknowledgments 

 The authors are grateful to the Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior (CAPES), Department of Forest Science of the 

Federal University of Lavras (UFLA) and the ONF Brazil group for supporting 

this work. 

 



57 

 

References 

 ACERBI JUNIOR, F. W. et al. Change detection in Brazilian savannas 

using semivariograms derived from NDVI images. Ciencia e Agrotecnologia, 

v. 39, n. 2, p. 103–109, 2015.  

 ATKINSON, P. M.; LEWIS, P. Geostatistical classification for remote 

sensing: an introduction. Computers & Geosciences, v. 26, n. 4, p. 361–371, 

maio 2000.  

 BALAGUER-BESER, A. et al. Semivariogram calculation optimization 

for object-oriented image classification. Modelling in Science Education and 

Learning, v. 4, n. 7, p. 91–104, 2011.  

 BALAGUER-BESER, A. et al. Using semivariogram indices to analyse 

heterogeneity in spatial patterns in remotely sensed images. Computers and 

Geosciences, v. 50, p. 115–127, 2013.  

 BALAGUER, A. et al. Definition of a comprehensive set of texture 

semivariogram features and their evaluation for object-oriented image 

classification. Computers and Geosciences, v. 36, n. 2, p. 231–240, 2010.  

 BERBEROGLU, S. et al. The integration of spectral and textural 

information using neural networks for land cover mapping in the Mediterranean. 

Computers and Geosciences, v. 26, n. 4, p. 385–396, 2000.  

 BERBEROGLU, S.; AKIN, A. Assessing different remote sensing 

techniques to detect land use/cover changes in the eastern Mediterranean. 

International Journal of Applied Earth Observation and Geoinformation, 

v. 11, n. 1, p. 46–53, 2009.  

 BIE, C.A.J.M.et al. LaHMa: a landscape heterogeneity mapping method 

using hyper-temporal datasets. International Journal of Geographical 

Information Science, v.26, n.11, p. 2177-2192. 2012. 

 CADENASSO, M. L.; PICKETT, S. T. A.; SCHWARZ, K. Spatial 

heterogeneity in urban ecosystems: Reconceptualizing land cover and a 



58 

 

framework for classification. Frontiers in Ecology and the Environment, v. 5, 

n. 2, p. 80–88, 2007.  

 CHEN, W.; HENEBRY, G. M. Change of spatial information under 

rescaling: A case study using multi-resolution image series. ISPRS Journal of 

Photogrammetry and Remote Sensing, v. 64, n. 6, p. 592–597, 2009.  

 COHEN, W. B.; SPIES, T. A.; BRADSHAW, G. A. Semivariograms of 

digital imagery for analysis of conifer canopy structure. Remote Sensing of 

Environment, v. 34, n. 3, p. 167–178, 1990.  

 COSTANTINI, M. L. et al. NDVI spatial pattern and the potential 

fragility of mixed forested areas in volcanic lake watersheds. Forest Ecology 

and Management, v. 285, p. 133–141, 2012.  

 CURRAN, P. J. The semivariogram in remote sensing: An introduction. 

Remote Sensing of Environment, v. 24, n. 3, p. 493–507, 1988.  

 DEVRIES, B. et al. Robust monitoring of small-scale forest 

disturbances in a tropical montane forest using Landsat time series. Remote 

Sensing of Environment, v. 161, p. 107–121, 2015.  

 DEVRIES, B. et al. Characterizing forest change using community-

based monitoring data and landsat time series. PLoS ONE, v. 11, n. 3, p. 1–25, 

2016.  

 FENG, X. et al. Remote sensing of ecosystem services: An opportunity 

for spatially explicit assessment. Chinese Geographical Science, v. 20, n. 6, p. 

522–535, 2010.  

 FERREIRA, L. V.; VENTICINQUE, E.; ALMEIDA, S. O 

desmatamento na Amazônia e a importância das áreas protegidas. Estudos 

avançados, v. 19, n. 53, p. 157–166, 2005.  

 FINGER, F. A. Diagnóstico do setor florestal no município de 

Cotriguaçu, Mato Grosso: perspectivas e desafios na percepção dos dirigentes da 

empresas florestais. 2005.  



59 

 

 GARCIA-PEDRERO, A. et al. A GEOBIA methodology for fragmented 

agricultural landscapes. Remote Sensing, v. 7, n. 1, p. 767–787, 2015.  

 GARRIGUES, S. et al. Quantifying spatial heterogeneity at the 

landscape scale using variogram models. Remote Sensing of Environment, v. 

103, n. 1, p. 81–96, 2006.  

 GARRIGUES, S. et al. Multivariate quantification of landscape spatial 

heterogeneity using variogram models. Remote Sensing of Environment, v. 

112, n. 1, p. 216–230, 2008.  

 GARRIGUES, S.; ALLARD, D.; BARET, F. Modeling temporal 

changes in surface spatial heterogeneity over an agricultural site. Remote 

Sensing of Environment, v. 112, n. 2, p. 588–602, 2008.  

 GIL-YEPES, J. L. et al. Description and validation of a new set of 

object-based temporal geostatistical features for land-use/land-cover change 

detection. ISPRS Journal of Photogrammetry and Remote Sensing, v. 121, p. 

77–91, 2016.  

 GRIFFITH, J. A. et al. Preliminary comparison of landscape pattern-

normalized difference vegetation index (NDVI) relationships to Central Plains 

stream conditions. Journal of environmental quality, v. 31, n. 3, p. 846–859, 

2002.  

 GUEDES, I. C. DE L. et al. Continuidade espacial de características 

dendrométricas em povoamentos clonais de Eucalyptus sp. avaliada ao longo do 

tempo. Cerne, v. 21, n. 4, p. 527–534, 2015.  

 HENEBRY, G. M. Detecting change in grasslands using measures of 

spatial dependence with landsat TM data. Remote Sensing of Environment, v. 

46, n. 2, p. 223–234, 1993.  

 HUANG, Y. et al. Spatio-temporal variation of landscape heterogeneity 

under influence of human activities in Xiamen City of China in recent decade. 

Chinese Geographical Science, v. 23, n. 2, p. 227–236, 2013.  



60 

 

 LAUSCH, A. et al. Monitoring and assessing of landscape heterogeneity 

at different scales. Environmental Monitoring and Assessment, v. 185, n. 11, 

p. 9419–9434, 2013.  

 POWERS, R. P. et al. Remote sensing and object-based techniques for 

mapping fine-scale industrial disturbances. International Journal of Applied 

Earth Observation and Geoinformation, v. 34, n. 1, p. 51–57, 2015.  

 QIU, B. et al. Characterizing landscape spatial heterogeneity in 

multisensor images with variogram models. Chinese Geographical Science, v. 

24, n. 3, p. 1–11, 2013.  

 SADER, S. A. Forest Harvest Patterns on an Industrial. n. October 2016, 

2003.  

 SERTEL, E.; KAYA, S.; CURRAN, P. J. Use of semivariograms to 

identify earthquake damage in an Urban Area. IEEE Transactions on 

Geoscience and Remote Sensing, v. 45, n. 6, p. 1590–1594, 2007.  

 TSCHARMTKE, T. et al. Landscape perspectives on agricultural 

intensification and biodiversity - Ecosystem service management. Ecology 

Letters, v.8, n.8, p. 857-874. 2005. 

 TREITZ, P. High Spatial Resolution Remote Sensing Data for Forest 

Ecosystem Classification An Examination of Spatial Scale. Remote Sensing of 

Environment, v. 72, n. 3, p. 268–289, 2000.  

 VOROVENCII, I. Assessment of some remote sensing techniques used 

to detect land use/land cover changes in South-East Transilvania, Romania. 

Environmental Monitoring and Assessment, v. 186, n. 5, p. 2685–2699, 2014.  

 WEN, Z. et al. Effects of normalized difference vegetation index and 

related wavebands’ characteristics on detecting spatial heterogeneity using 

variogram-based analysis. Chinese Geographical Science, v. 22, n. 2, p. 188–

195, 2012.  



61 

 

 WOODCOCK, C. E.; STRAHLER, A. H.; JUPP, D. L. B. The use of 

variograms in remote sensing: I. Scene models and simulated images. Remote 

Sensing of Environment, v. 25, n. 3, p. 323–348, 1988.  

 WHITE, D. A., HOOD, C.S., HARCOMBE, P. Vegetation patterns and 

environmental gradients in tropical dry forests of the northern Yucatan 

Peninsula. Journal of Vegetation Science, v. 15, n.2, p. 151-161. 2004. 

 WU, J. et al. Multiscale Analysis of Landscape Heterogeneity: Scale 

Variance and Pattern Metrics. Annals of GIS, v. 6, n. 1, p. 6–19, 2000.  

 WU, J. Key concepts and research topics in landscape ecology 

revisited : 30 years after the Allerton Park workshop. p. 1–11, 2013.  

 WU, X. et al. Evaluation of semivariogram features for object-based 

image classification. Geo-spatial Information Science, v. 18, n. 4, p. 159–170, 

2015.  

 YUE, A. et al. Texture extraction for object-oriented classification of 

high spatial resolution remotely sensed images using a semivariogram. 

International Journal of Remote Sensing, v. 34, n. 11, p. 3736–3759, 2013.  

 ZACCARELLI, N. et al. Indicating disturbance content and context for 

preserved areas. Ecological Indicators, v. 8, n. 6, p. 841–853, 2008.  

 ZURLINI, G. et al. Disturbance patterns in a socio-ecological system at 

multiple scales. Ecological Complexity, v. 3, n. 2, p. 119–128, 2006. 

 

 

  



62 

 

  



63 

 

ARTICLE 2 - ASSESSMENT OF GEOSTATISTICAL FEATURES FOR 

OBJECT-BASED IMAGE CLASSIFICATION OF CONTRASTED 

LANDSCAPE VEGETATION COVER 

 

 

Eduarda Martiniano de Oliveira Silveira,a* Michele Duarte Menezes,b Fausto 

Weimar Acerbi Júnior,a Marcela Castro Nunes Santos Terrac, José Márcio de 

Melloa 

 

 

 
a Federal University of Lavras, Forest Science Department, Campus UFLA, 

Lavras, Brazil, 3037 

b Federal University of Lavras, Soil Science Department, Campus UFLA, 

Lavras, Brazil, 3037 

c Federal University of Lavras, Engineering Department, Campus UFLA, Lavras, 

Brazil, 3037 

 

 

 

 

 

 

 

 

Publication status: Published in the Journal of Applied Remote Sensing  

10.1117/1.JRS.11.036004 

  



64 

 

Abstract. Accurate mapping and monitoring of savanna and semi-arid 

woodland biomes is needed to support the selection of new areas of 

conservation; to provide sustainable land use; and to improve the understanding 

of vegetation. This paper studies the potential of geostatistical features, derived 

from medium spatial resolution satellite imagery, to characterize contrasted 

landscape vegetation cover and improve object-based image classification. The 

study site in Brazil includes cerrado sensu stricto, deciduous forest, and palm 

swamp vegetation cover. Sentinel 2 and Landsat 8 images were acquired and 

divided into objects, for each of which a semivariogram was calculated using 

near-infrared (NIR) and normalized difference vegetation index (NDVI) to 

extract the set of geostatistical features. Features selected by principal 

component analysis (PCA) were used as input data to train a random forest (RF) 

algorithm. Tests were conducted, combining spectral and geostatistical features. 

Change detection evaluation was performed using a confusion matrix and its 

accuracies. The semivariogram curves were efficient to characterize spatial 

heterogeneity, with similar results using NIR and NDVI from Sentinel 2 and 

Landsat 8. Accuracy was significantly greater when combining geostatistical 

features with spectral data, suggesting that this method can improve image 

classification results. 

 

Keywords: semivariogram, remote sensing, mapping, cerrado, deciduous forest, 

palm swamps 
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1.Introduction 

 Minas Gerais is the fourth-largest state in Brazil, covering an area 

(586,528 km²) equivalent to that of France or Spain. Savanna biome is 

predominant in the west/northwest, with warmer and wetter climate during 

summer, and a pronounced dry period. Semi-arid woodland biome is 

predominant in the northern area, characterized by semi-arid and sub-humid 

climates, with higher temperatures and lower rainfall throughout the year.1 

 Accurate mapping and monitoring of savanna and semi-arid woodland 

biomes are needed to support the selection of new areas of conservation, to 

provide sustainable land use, and to improve the understanding vegetation.2 

Identification of land cover types provides basic information for generating other 

thematic maps, and establishes a baseline for monitoring activities.3 The 

production of accurate land cover maps is a difficult task, mainly due to large 

areas, great seasonality, land use pressure highly dynamic, and presence of 

clouds.4 

 Remote sensing data have successfully been used to map this biome 

across large areas and in inaccessible terrain.5 However, there are large areas of 

spectrally similar but compositionally different vegetation cover, or continuums 

of cover of varying densities of tree cover, that might be difficult to differentiate, 

potentially increasing classification uncertainty. Furthermore, most algorithms 

for image classification do not consider the spatial dependence between pixels 

and their neighbors. For discriminating land cover classes, it would be advisable 

to complement spectral bands with sensor information on the textural features of 

an image. 6 

 Recently, many studies have used geostatistics, by means of 

semivariograms, to describe the textural and spatial features of remote sensing 

images.7-14 Semivariograms describe data variability patterns and can be used to 

investigate and quantify spatial variability.15  
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 Object-based classifications have been made using semivariogram 

features for image classification. Ref. 16 used the semivariogram to extract 

texture information in agricultural parcel limits. Ref. 10 achieved high 

classification performance with semivariogram features, using various texture 

feature sets in rural parcels. Ref. 17 used semivariogram features with other 

spectral, textural, and shape features extracted from high-resolution imagery for 

object classification in urban areas. Ref.13 used semivariogram features to 

improve the accuracy of object-based classification using QuickBird satellite 

images. Ref. 18 used semivariogram features for object-based classification to 

map industrial disturbances in forest areas. For object-based classification of 

generic land cover types, Ref. 10 and Ref. 19 demonstrated better performance 

by combining spectral information and features derived from semivariograms. 

 Although semivariograms have been applied for image classification, 

few studies have focused on object-based classification using medium spatial 

resolution (10–100 m)3 remotely sensed images, such as Sentinel and Landsat, to 

map landscape vegetation areas. 

 Remote sensing has proved its value in many fields but the success of 

any image classification depends on various factors, including the choice of a 

suitable classification procedure.20 Over the last two decades the use of the 

random forest (RF) classifier21 has received increasing attention due to the 

excellent classification results obtained and the speed of processing.22-26 The RF 

classifier is less sensitive than other streamline machine learning classifiers to 

the quality of training samples and to overfitting, due to the large number of 

decision trees produced by randomly selecting a subset of training samples and a 

subset of variables for splitting at each tree node.24 

 Thus, the hypothesis here is: the NDVI (normalized difference 

vegetation index) and NIR (near-infrared) spatial variability provided by 

semivariogram features from different landscape vegetation cover could be used 
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as input data to train a RF classifier, thereby improving object-based 

classification of images. In this sense, the present study aims to: (1) characterize 

the NDVI and NIR spatial variability of contrasted landscape vegetation cover 

using sill parameter and semivariogram shape; (2) analyze the effects of image 

resolution from different satellite sources; and (3) evaluate a set of geostatistical 

features for object-based image classification.  

 

2.Methodology 

 In this section, we describe the data, study area, proposed set of 

geostatistical features (semivariogram indices), and the steps involved in spatial 

variability characterization and image classification. The methodology consists 

of the following main steps, also presented in Fig. 1: 

(1) Image acquisition; 

(2) NDVI transformation and NIR data; 

(3) Collection of training samples of land cover vegetation types; 

(4) Image segmentation by a multiresolution algorithm to generate the image 

objects; 

(5) Feature extraction from NDVI and NIR computed within objects for 

semivariogram modeling; 

(6) Feature extraction from NDVI and NIR computed within objects for 

semivariogram and spectral features generation; 

(7) Principal component analysis (PCA) to group and interpret the redundancies 

in the information. 

(8) Image classification by Random Forest (RF) algorithm; 

(9) Classification evaluation by the confusion matrix and its accuracy measures. 
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 Fig. 1 Methodology workflow. 

 

2.1 Study Area and Data Set 

  The study site is located in the north of Minas Gerais state, Brazil, with 

transition of savanna and semi-arid woodland biomes (Fig. 2). A site of 745 km² 

with contrasting landscape vegetation cover was chosen for semivariogram 

modeling.  
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Fig. 2 Study area location in Minas Gerais state, Brazil. 

  

 Savanna biome includes vegetation cover ranging from dry grassland to 

densely wooded savanna.27 In Brazil, savanna is the second-largest biome, after 

the Amazonian biome. Savanna is also a world biodiversity hotspot, including 

many endemic and rare species.28 Semi-arid woodland is represented by 

deciduous seasonal forest, and is an ecosystem occupied by tropical dry forest 

and shrub vegetation.27 

 The predominant land cover vegetation types in the study area are: 

cerrado sensu stricto, deciduous forest, and palm swamp (veredas). One of the 

main forms of landscape vegetation cover in savanna biome is cerrado sensu 

stricto29, which demonstrates well-defined arboreal and shrub-herbaceous 

layers30 with arboreal coverage varying from 10% to 60%. Deciduous forest is 

marked by a dry season and a well-defined rainy season. The main difference of 

this forest type in relation to the semi-deciduous seasonal forest is the 

predominance of deciduous individuals whose loss of foliage reaches more than 
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50% of these in the unfavorable season.30 Palm swamps are included in the 

savanna biome. These areas are preferred for crops due to higher soil fertility 

and water availability.31 However, palm swamps are legally protected as 

Permanent Preservation Areas, according to the Brazilian Forest Code, and so 

any use is restricted. 

 Sentinel 2 and Landsat 8 satellite images from September 2016 were 

used. The data were acquired from the United States Geological Survey for 

Earth Observation and Science (USGS/EROS) at the processing level of Landsat 

Surface Reflectance, with the appropriate geometrical corrections and 

reflectance values to the soil level. 

 The Sentinel-2 mission, launched in 2015, is a land monitoring 

constellation of two satellites (Sentinel 2a and Sentinel 2b) providing global 

optical imagery with 13 spectral bands using the MSI (Multispectral Imager) 

instrument, and has spatial resolution of 10 m to 60 m. The Landsat 8 satellite, 

launched in 2013, has 11 bands and spatial resolution of 30 m to 100 m. From 

each corrected image, the NDVI and NIR bands were used.  

 The selection of sample classes was based on the map produced by the 

Forest Inventory of Minas Gerais project, which generated abundant qualitative 

and quantitative information about the forest remnants within the state.32 

 

2.2 Image Segmentation 

 In the object-based image analysis (OBIA), pixels are not individually 

classified but are combined into homogenous groups (objects) and classified 

together.33-35 The object becomes the basic unit of analysis, and is characterized 

by a large number of descriptive features derived from the images.  

 Objects have additional spectral information compared to single pixels 

(e.g. mean values, minimum and maximum values, standard deviation etc.),36 

but of even greater advantage than the diversification of spectral value 
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descriptions of objects is the additional spatial information for objects37,38, 

including features derived from geostatistical functions.10,12,13,16-19 It has been 

frequently claimed that this spatial dimension is crucial to OBIA methods, and 

that this is a major reason for the marked increase in the usage of segmentation-

based methods in recent times.36 

 The first step in OBIA is image-object extraction, which is achieved by 

segmentation or stratification of the images that may be applied using external 

information to like-parcel boundaries.39 Image segmentation is the division of 

the satellite image into spatially continuous and homogeneous objects.35 Image 

segmentation is the core of OBIA, and various segmentation techniques have 

been developed around it.36 In this study, the Sentinel 2 and Landsat 8 images 

were segmented according to their spectral and spatial attributes, using the 

multiresolution segmentation algorithm.40 

 Multiresolution segmentation is a basic procedure in the software 

eCognition for object-based image analysis, and was used here to produce image 

objects as a first step before carrying out further feature extraction and image 

classification analysis. The multiresolution segmentation produces highly 

homogeneous image objects at an arbitrary resolution on different types of data. 

40. Three key segmentation parameters (shape, compactness and scale) control 

the size, shape, and spectral variation of segmented image objects.41 The shape 

parameter was set to 0.1 and compactness was set to 0.5. The most critical step 

is the selection of the scale parameter, which controls the size of the image 

objects. The scale parameter sets a homogeneity threshold that determines the 

number of neighbouring pixels that can be merged together to form an image 

object.42 The scale of segmentation directly influences the size of the objects 

connected to the semivariogram predefined criteria (lag distance) and the 

minimum number of pixels inside each object necessary to generate the 

semivariogram. We used a ‘‘trial and error” approach43 to find the appropriate 
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scale parameter44 to guarantee a minimum number of samples (25 pixels) inside 

the objects. 

2.3 Semivariogram Modeling  

 Spatial variability of landscape vegetation cover was characterized from 

semivariogram modeling of medium spatial resolution with NIR and NDVI data. 

We used the sill parameter and semivariogram shape. Representative forest 

remains of cerrado sensu stricto, deciduous forest, and palm swamp were 

selected, and corresponding semivariograms were generated using NIR and 

NDVI from both images (Fig. 3).  

 

Fig. 3 Example of semivariogram modeling using NIR and NDVI data for three 

types of landscape vegetation cover. 

 

 For continuous variables such as NIR and NDVI, the experimental 

semivariogram is defined as half of the average squared difference between 

values separated by a given lag, where this lag is a vector in both distance and 

direction.15 

The semivariance is defined from the spatial variance of measures performed in 
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samples from a determined distance (h) being the sum of the squares’ difference 

between the sampled values separated by a distance (h), divided by two times 

the number of possible pairs on each distance, as estimated by Equation 1. 

γ(h)=
1

2N(h)
∑ [Z(x)-Z(x+h)]2N(h)

i=1                                                (1) 

 

 Here, γ (h) is the estimator of the semivariance for each distance h, N(h) 

is the number of pairs of points separated by the distance h, Z(x) is the value of 

the regionalized variable at point x, and Z(x+h) is the value of the point (x+h). 

 The semivariogram provides graphical representation of spatial variance 

versus distance h, which enables estimation of the variance for combinations of 

different pairs of points. The semivariance functions are characterized by three 

parameters: sill, range, and nugget effect. Sill is the plateau reached by the 

semivariance values, and shows the quantity of variation explained by the spatial 

structure of the data. Range is the distance at which the semivariogram reaches 

the sill, showing the distance until the point where the data are correlated. 

Nugget effect is the combination of sampling errors and variations in slight 

scales that occurs at scales smaller than the distance between the sampled points. 

The sill was used to characterize the landscape spatial variability of vegetation 

cover.  

 When the semivariogram is calculated for each individual object, an 

important factor to be considered is the lag distance. It should not be larger than 

the spatial extent of the object; on the other hand, an exceedingly small distance 

fails to provide a complete description of textural features. We attempted to find 

an optimal lag distance to ensure that sill values would provide a concise 

description of data variability. The interval used between two lags (distance 

between pairs of points of semivariogram calculation) was one pixel, in order to 

obtain maximum detail on the spatial heterogeneity of landscape vegetation 

cover.  Thus, the lag size was equivalent to the size of the pixel (10 m for 
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Sentinel 2; 30 m for Landsat 8). The number of lags was fixed at 20 pixels to 

ensure that sill values provide a concise description of data variability, resulting 

in a lag distance of 200 m using Sentinel 2 and 600m using Landsat 8. The size 

of the samples needs to be larger than the range of influence in order to 

characterize the initial part of the semivariogram curves, and large enough to 

reveal the presence of periodicity.45 

 The theoretical semivariograms were estimated by fitting mathematical 

models to the experimental semivariogram using weighted least squares. 

Exponential, spherical, and Gaussian models were tested. 

 

2.4 Geostatistical Features  

 In addition to the semivariogram parameters commonly used (mentioned 

above), after computing the experimental semivariogram, indices proposed by 

Ref.10 were generated to evaluate geostatistical features as input data to image 

classification. These were included in the object-based descriptive feature, and 

the values were extracted by FETEX 2.0 software.46 

 Such indices enable a more detailed description of experimental 

semivariogram shapes and spatial patterns, providing textural information that 

may be used for change detection analysis (Table 1). They are categorized as: 

(1) near the origin, and (2) up to the first maximum. The group of features is 

defined to provide such information as the change ratio, slope, concavity, and 

convexity level of the image at short distance.  
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Table 1 Parameters described in Ref.10 based on the points defining the 

experimental semivariogram. 

Indices Description Formula 

Near the Origin 

RVF Ratio between the values of the total 

variance and the semivariance at first 

lag 

RVF=
Variance

γ1
 

RSF Ratio between semivariance values 

at second and first lag 
RSF=

γ2

γ1
 

FDO First derivative near the origin 
FDO=

γ2- γ1

h
 

SDT Second Derivative at third lag 
SDT=

γ4- 2γ3+ γ2 

h
2

 

Up to the First Maximum 

FML The lag value where the curve 

reaches the first local maximum 
FML=hmax_1 

MFM Mean of the semivariogram values 

up to the first maximum 
MFM=

1

Max_1
∑γi 

VFM Variance of the semivariogram 

values up to the first maximum 
VFM=

1

Max_1
∑(γi-γ)² 

DMF Difference between MFM and the 

semivariance at first lag 
DMF=MFM- γi 

RMM Ratio between the semivariance at 

first local maximum and MFM 
RMM=

γ
max_1

γ
max_1
mean

 

SDF Second-order difference between 

first lag and first maximum. 
SDF=γ

max_1
-2γmax_1 

2

+γ2 

AFM Semivariance curvature 

AFM=
h

2
(γ1+2 ( ∑ γ1

max_1-1

i=2

) +γ
max_1

) -

(γ1(hmax_1-h1)) 

  

 According to Ref.10, an advantage of the proposed set of features, as 

opposed to the raw semivariance values, is that they synthesize the most relevant 

information about the shape of the semivariogram in a few features. They 

identify the singular points and enhance the information contained on the first 

lags, where spatial correlation at short distances is higher. In addition, fitting a 
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model is unnecessary, which improves the processing time and reduces the 

errors generated by choosing an incorrect model.  

 For comparative purpose, spectral features such as minimum (MIN), 

mean (MEAN), maximum (MAX) and standard deviation (DEVST) were 

included to assess the contribution of geostatistical features (semivariogram 

indices). And also, the combined performance of semivariogram indices and 

spectral features was tested. Since a large number of spectral and spatial features 

were generated, principal component analysis (PCA) was performed to group 

and interpret the redundancies in the information. Thus, the number of variables 

is reduced and multicollinearity is avoided. 

 

2.5 Classification and Evaluation  

 Within the extent of the objects, the semivariogram indices and spectral 

data were extracted as inputs for training the classifier. A group of samples was 

selected manually by visual interpretation, and was divided into two parts for 

classifier training and classification assessment respectively. A data set of 300 

objects, with 50 samples per class, was employed, and the samples were 

randomly allocated (50:50) to training or evaluation.  

 A RF classifier was used to model the landscape vegetation cover. The 

RF algorithm, initially proposed by Ref. 21, is an ensemble method which 

generates a set of individually trained decision trees and combines their results. 

As described by Ref. 47, such classification is based on a machine learning 

algorithm, is a robust non-parametric classifier, and has the ability to 

accommodate many predictor variables. The advantages of RFs include 

excellent accuracy, efficient implementation on large datasets, and a structure 

that enables the future use of pre-generated trees 21.  

 The RF algorithm fitted in this study is implemented in the open source 

software WEKA 3.8. Two parameters need to be set in order to produce the 
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forest trees: the number of decision trees to be generated (Ntree) and the number 

of variables to be selected and tested for the best split when growing the trees 

(Mtry).24  

 Five hundred trees were grown for each classification.48 The Ntree 

required to maintain a certain level of accuracy has been assessed by several 

authors, and the minimum number of trees for optimal classification appears to 

be somewhat fewer than 10049 to 300 trees50 and the majority of the studies set 

the Ntree value to 500 because the errors stabilize before this number of 

classification trees is achieved.49 Therefore, using 500 may not be necessary, but 

does not harm the model.21 Since RF classifier is computationally efficient and 

does not overfit, Ntree can be as large as possible.51 

 Since theoretical and empirical research has highlighted that 

classification accuracy is less sensitive to Ntree than to the Mtry parameter52, the 

number of features was left at their default values (log of the number of features 

+ 1)48. The best results were identified using a cross-validation method. 

 Tests were done combining spectral and geostatistical features, resulting 

in three groups of classification assessment: (1) the spectral features, comprising 

the MIN, MEAN, MAX and DEVST chosen by PCA Analysis; (2) the 

geostatistical features, comprising the semivariogram indices chosen by PCA 

analysis and (3) the combination of spectral and geostatistical features. 

 Image classification evaluation was performed using a confusion 

matrix53 and its accuracies: (1) the overall accuracy, which is computed by 

dividing the total number of correct results by the total number of samples in the 

error matrix; (2) the producer's accuracy, which indicates the probability of a 

reference pixel being correctly classified and is actually a measure of omission 

error; (3) the user's accuracy, which is indicative of the probability that a sample 

classified on the image actually represents that category on the ground and (4) 

the kappa coefficient, which is a statistic that measures the inter-rater agreement 
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for qualitative items. It is generally thought to be a more robust measure than 

simple percent agreement calculation, since it takes into account the possibility 

of the agreement occurring by chance. 

 

3 Results and Discussion 

3.1 Semivariogram Analysis 

 The semivariograms reached the sill within the calculated distance, 

indicating that their spatial extent of 20 pixels was large enough to encompass 

the entire spatial variability. Table 2 presents the sill semivariogram parameters 

obtained from each landscape vegetation cover using NIR and NDVI data from 

Sentinel 2 and Landsat 8 images.  

 

Table 2 Sill semivariogram parameters. 

σ² - sill.  

 

 The Sentinel 2 spatial variability obtained for NIR and NDVI 

(represented by σ²) increased from cerrado sensu stricto to deciduous forest and 

palm swamp. The two first vegetation covers have lower sill values, because of 

the presence of green understory, which decreases the variation explained by the 

spatial structure.  The higher variability of palm swamps is explained by 

the influence of water, since it is riparian vegetation. Such landscape has a 

mixture of vegetation and water on NIR and NDVI values, increasing the 

internal variability within objects, contrasting high values for palm, and low 

Satellite image Landscape 

vegetation cover 

σ² NIR σ² NDVI 

Sentinel 2 

Cerrado sensu stricto 9,002 0.00012 

Deciduous forest 27,278 0.00043 

Palm swamp 153,606 0.0146 

Landsat 8 

Cerrado sensu stricto 137,751 0.00007 

Deciduous forest 489,861 0.00012 

Palm swamp 2,069,336 0.0035 
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values for water.  

 The low variability of cerrado sensu stricto compared to deciduous 

forest is due to its dense vegetation with high density of trees: approximately 

1,074 per hectare versus 973 trees/ha in deciduous forest.27 It homogenizes the 

distribution of NIR and NDVI values. Furthermore, the presence of rock 

outcrops in deciduous forest increases the internal variability. 

 Analyzing the semivariogram parameters generated using NIR and 

NDVI from Landsat 8, the trends were the same as those for Sentinel 2 (Table 

2). The sill (σ²) semivariogram parameter increased considerably from cerrado 

sensu stricto and deciduous forest to palm swamp. According to Ref.7, 

semivariogram shape provides an understanding of the data spatial structures. 

The semivariogram curves of vegetation cover obtained from NIR and NDVI are 

shown for Sentinel 2 (Fig. 4) and Landsat 8 (Fig. 5). 
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Fig. 4 Semivariograms generated using Sentinel 2. 
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Fig. 5 Semivariograms generated using Landsat 8. 

 

 The semivariogram curves using NIR and NDVI from Sentinel 2 and 

Landsat 8 presented similar trends for the three contrasted landscape vegetation 

covers. The range among palm swamps and the other classes was higher with 

NDVI; however, it was smaller between cerrado sensu stricto and deciduous 

forest.  The semivariogram curves described efficiently the spatial heterogeneity 

of landscape vegetation cover and also presented similar trends for the three 

contrasted vegetation types. These results demonstrate that the image spatial 
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resolution tested (10 and 30 m) did not affect semivariogram characterization. 

 

3.2 Feature Selection 

 PCA computed across the complete set of features shows that most of 

the data variability is concentrated within the first two principal components 

(Table 3). Therefore, the features of each group (Spectral, Neat the Origin and 

Up to Fist Maxima) with higher correlations to the first two PCA components 

were selected. Visualization of the ordinations graphics enables better 

understanding of redundancies (Fig. 6). 

 

Table 3 Selected features according to the PCA. 

  
Spectral Near the Origin 

Up to First 

Maxima 
PC1 / PC2 

Sentinel 

NIR 

DEVST FDO MFM 
60.56% of 

total variation 
MEAN RVF SDF 

  FML 

Sentinel 

NDVI 

DEVST FDO MFM 
62.90% of 

total variation 
MAX SDT SDF 

  RMM 

Landsat 

NIR 

DEVST FDO MFM 
55.68% of 

total variation 
MEAN RVF SDF 

  FML 

Landsat 

NDVI 

DEVST FDO MFM 53.28% of 

total variation MIN RVF RMM 

 

 In the group of spectral features, near the origin, and up to first maxima, 

the representative ones, were the DEVST, FDO and MFM, respectively. Thus, 

we recommend these group of features as general input data to train a classifier. 

Among the spectral features, the DEVST is the unique that represent spatial 

information, and probably this characteristic made this feature the most 

important. About the group of features that provides information near the origin, 

FDO represents the slope of the semivariogram at the first two lags, 
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approximating the first derivative near the origin It shows the variability changes 

of the data at short distances. MFM is the mean of the semivariogram values up 

to the first maximum. It is an indicator of the average of the semivariogram 

values between the first lag and the first maximum. It provides information 

about the changes in the variability of the data, and is related to the concavity or 

convexity of the semivariogram in that interval. 

 

Fig. 6. Projection of features in principal component planes: (a) Sentinel NIR; 

(b) Sentinel NDVI; (c) Landsat NIR; (d) Landsat NDVI.  

 

3.3 Classification Assessment 

 Table 4 compares the producer, user, and overall accuracies obtained 

using Sentinel 2 imagery with NIR and NDVI data. The features tested are 

effective for classifying landscape vegetation cover, presenting overall 
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accuracies greater than 80%. 

 The highest overall accuracy (93.63%) was obtained by combining 

NDVI and the indices provided by the semivariogram, followed by the 

combination of NIR spectral data and spatial indices (91.81%). The lowest 

overall, user, and producer accuracies were obtained using only the indices. 

Analyzing the classes’ accuracies, the Cerrado sensu stricto and Deciduous 

forest classes also presented the highest producer’s and user’s accuracies using 

NDVI and the semivariogram indices with all values higher than 86%. Most 

important to notice is that the Deciduous forest, a difficult class to map, 

presented only 1.92% of commission errors, without any omission errors, using 

this mapping strategy. The exception was the Palm swamp class that presented 

the lowest commission error (user accuracy equal to 84 %) using NIR and 

spatial indices. 

 

Table 4 Classification results using Sentinel 2. 

Classes 
NIR Indices NIR + Indices 

PA UA PA  UA  PA  UA 

Cerrado sensu stricto 85.71 90.91 77.14 81.82 85.29 87.88 

Deciduous forest 90.91 96.15 85.45 90.38 92.73 98.08 

Palm swamp 100.00 80.00 100.00 80.00 100.00 84.00 

OA 90.90 85.45 91.81 

Classes 
NDVI Indices NDVI + Indices 

PA UA PA  UA  PA  UA 

Cerrado sensu stricto 80.56 87.88 84.38 81.82 86.49 96.97 

Deciduous forest 96.15 96.15 82.14 88.46 100.00 98.08 

Palm swamp 90.91 80.00 86.36 76.00 90.91 80.00 

OA 90.91 83.63 93.63 

OA – overall accuracy; PA – producer accuracy; UA – user accuracy.  

 

 Using Landsat 8 image, the highest overall accuracy (95.41%) was 

obtained by combining NDVI spectral data and the indices provided by the 

semivariogram, followed by the combination of NIR and spatial indices 
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(91.74%). The lowest overall accuracy was obtained using only the geostatistical 

indices (69.72% and 88.08%) for NIR and NDVI, respectively (Table 5). 

Analyzing the classes’ accuracies, combining NDVI and the indices was the best 

strategy for all classes, with values higher than 87%. The exception was the 

Palm swamp class that presented the lowest commission error (user accuracy 

equal to 91.67 %) using only the indices. 

 

Table 5 Classification results using Landsat 8. 

Classes 
NIR Indices NIR + Indices 

PA UA PA  UA  PA  UA 

Cerrado sensu stricto 85.29 87.88 78.13 75.76 91.18 93.94 

Deciduous forest 90.57 92.31 67.21 78.85 94.23 94.23 

Palm swamp 81.82 75.00 62.50 41.67 86.96 83.33 

OA 87.15 69.72 91.74 

Classes 
NDVI Indices NDVI + Indices 

PA UA PA  UA  PA  UA 

Cerrado sensu stricto 87.88 87.88 84.85 84.85 94.12 96.97 

Deciduous forest 92.59 96.15 88.46 88.46 96.23 98.08 

Palm swamp 90.91 83.33 91.67 91.67 95.45 87.50 

OA 90.82 88.07 95.41 

OA – overall accuracy; PA – producer accuracy; UA – user accuracy.  

 

 The results show significantly increased accuracy by combining 

geostatistical features with spectral data for all types of vegetation cover, 

considering also NIR and NDVI, and Sentinel 2 and Landsat 8 images. 

 

4 Conclusions  

 This study examined whether spatial variability described by 

semivariograms for different types of landscape vegetation cover, derived from 

NIR and NDVI data from Sentinel 2 and Landsat 8, has potential use as input 

data to train a RF classifier and improve object-based image classification.  

 We demonstrated that: (1) semivariogram curves were efficient for 
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characterizing spatial heterogeneity within contrasting landscape vegetation 

cover; (2) the results from Sentinel 2 and Landsat 8 satellite images were similar 

using both NIR and NDVI data; and (3) accuracy was significantly improved by 

combining geostatistical features with spectral data, thereby supporting the use 

of the selected indices to improve image classification procedures.  

 The two major limitations of the approach used in this study are the 

predefined criteria required to generate the semivariogram and the object size of 

the OBIA approach. An image object should be adequately sized to sufficiently 

represent its textural pattern, with the minimum number of necessary pixels to 

generate the semivariogram. The main limitation is the presence of long and 

narrow objects.  

 The relationship between the scale of segmentation and the lag distance 

need be further explored, and also we recommend further studies to improve this 

methodology and its evaluation in other areas/vegetation types for comparison 

purposes. 
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ABSTRACT: Object-based change detection is a powerful analysis tool for 

remote sensing data, but few studies consider the potential of temporal 

semivariogram indices for mapping land-cover changes using object-based 

approaches. In this study, we explored and evaluated the performance of 

semivariogram indices calculated from remote sensing imagery, using the 

Normalized Differential Vegetation Index (NDVI) to detect changes in spatial 

features related to land cover caused by a disastrous 2015 dam failure in Brazil’s 

Mariana district. We calculated the NDVI from Landsat 8 images acquired 

before and after the disaster, then created objects by multiresolution 

segmentation analysis based on post-disaster images. Experimental 

semivariograms were computed within the image objects and semivariogram 

indices were calculated and selected by principal component analysis. We used 

the selected indices as input data to a support vector machine algorithm for 

classifying change and no-change classes. The selected semivariogram indices 

showed their effectiveness as input data for object-based change detection 

analysis, producing highly accurate maps of areas affected by post-dam-failure 

flooding in the region. This approach can be used in many other contexts for 

rapid and accurate assessment of such land-cover changes.  

 

Index terms: Remote sensing; geostatistics; feature extraction 
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RESUMO: Recentemente, variáveis geoestatísticas derivadas de imagens de 

sensoriamento remoto ganharam espaço dentre os procedimentos de detecção de 

mudanças, porém, o potencial temporal destas variáveis para o mapeamento das 

mudanças baseado na análise por objetos ainda é pouco estudado. Neste estudo, 

o desempenho de um conjunto de índices calculados de semivariogramas 

derivados de imagens NDVI bitemporais para detectar mudanças na cobertura 

do solo foi analisado e avaliado. O município de Mariana foi selecionado para 

teste e validação da metodologia devido ao grande impacto ocasionado pelo 

desastre. O processo iniciou-se com a aquisição de imagens Landsat 8 antes e 

após o desastre e o cálculo do NDVI. Os objetos foram criados através da 

segmentação em multiresolução baseada na imagem pós-desastre. Os 

semivariogramas experimentais foram gerados dentro de cada objeto e os índices 

foram extraídos e selecionados através da análise de componentes principais. Os 

índices selecionados foram utilizados como dados de entrada para o algoritmo 

support vector machines para a classificação de áreas de mudança e não 

mudança. Os índices selecionados se mostraram efetivos para a detecção de 

mudanças, indicando a possibilidade de utilização para a detecção de mudanças 

baseada em objetos, resultando em um mapa precisos das áreas inundadas 

afetadas pelo desastre. Esta abordagem pode ser usada em muitos outros 

contextos para uma avaliação rápida e precisa de tais mudanças na cobertura do 

solo.  

 

Termos para indexação: Sensoriamento remoto; geostatistica; extração de 

atributos. 
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INTRODUCTION 

 

 The collapse of a mining dam in the Brazilian state of Minas Gerais on 

November 5th 2015, considered one of the biggest environmental disasters in 

the country’s history, resulted in the destruction of whole communities by a river 

of mud and mining waste. This calamity affected the Gualaxo River, a tributary 

to the Carmo River and ultimately the Doce River, waterways that supply water 

to a significant number of municipalities. The flood affected 600 kilometers of 

riverbed and destroyed human and animal lives as well as several land-cover 

classes (such as grasslands, urban areas, and native vegetation), including in 

permanent preservation areas. The full extent of the environmental impacts is yet 

unknown, and the changes within the affected area have yet to be fully 

quantified.  

 Remote sensing techniques are effective in capturing the structure, rates, 

and changes of land cover. They can supply essential information concerning the 

ecological status of a region, including changes that modify plant phenological 

standards and deforestation (Munroe; Southworth; Tucker 2002; Tucker et al., 

2005; Yue et al., 2003). The Normalized Difference Vegetation Index (NDVI) is 

an important approach to the analysis of land-cover structure analysis and its 

temporal modifications (Griffith et al., 2007). According to Costantini et al. 

(2012) and Garrigues et al. (2006), NDVI images are the most robust variable 

used to describe the spatial and temporal heterogeneity of a landscape’s 

biosphere. In addition, these data can be treated as regionalized variables once 

the information contained in a pixel is highly correlated with the information 

contained in neighboring pixels (Acerbi Junior et al., 2015; Curran, 1988). 

  Studies of environmental disasters have emphasized the importance of 

damage determination to assist environmental management programs and 

stressed the use of remote sensing images and geostatistical techniques as central 
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tools for this kind of analytical approach (Sertel; Kaya; Curran, 2007). 

Combining remote sensing information with GIS techniques and geospatial 

databases can increase the accuracy and reduce the processing time of change 

detection and classification procedures (Berberoglu et al., 2000; Berberoglu; 

Akin 2009; Garcia-Pedrero et al., 2015).  

 For example, semivariograms are an analytical technique used to assess 

the relationship and variance between points based on distance and a given 

variable. These have been used as measures of texture (Curran 1988; Woodcock; 

Strahler; Jupp et al. 1988), for improved image classification (Balaguer et al., 

2010;  Balaguer-Beser et al., 2011; Wu et al., 2015 Yue et al., 2013; Powers et 

al., 2015), and more recently, in change detection studies (Costantini et al., 

2012; Sertel et al., 2007; Gil-Yepes et al., 2016). Acerbi Junior et al. (2015) 

demonstrated the potential of semivariogram parameters (derived from 

bitemporal NDVI images) to detect changes in Brazilian savanna vegetation, 

showing that these parameters increased on deforested areas and remained 

constant in regions where the land cover had not changed.  

 In recent years, semivariograms have also contributed to object-based 

image analysis (OBIA) (Meer, 2012). Powers et al. (2015) used semivariogram 

features and OBIA for classification of industrial disturbances in forest areas. 

Balaguer et al. (2010) achieved high-accuracy measurements by combining 

semivariogram features and spectral information in land cover mapping. Gil-

Yepes et al. (2016) proposed and evaluated a set of new temporal geostatistical 

features for object-based change detection (OBCD) analysis within agricultural 

plots at two different dates, showing that the new set of cross-semivariogram 

and codispersion features provided high global accuracy measures when 

compared to the use of only spectral information.  

 Textural features have proven to be more effective than spectral bands 

alone for change detection (Chen et al., 2012; Wu et al., 2000). However, few 
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studies have explored the potential of temporal semivariogram features for 

mapping land cover changes using the OBCD approach. We hypothesized that 

landscape changes could be accurately detected using only semivariograms 

calculated from NDVI images and so we explored and evaluated the 

performance of semivariogram indices in an object-based approach to detecting 

land-cover changes caused by the 2015 dam-collapse disaster in Brazil. 

 

MATERIAL AND METHODS 

 

 We derived the NDVI from Landsat 8 images for use in an object-based 

change detection approach to analyzing land-cover changes in the afflicted area, 

using the following methodology (graphically summarized in Figure 1): 

(1) Image acquisition and NDVI transformation  

(2) Object delimitation by multiresolution algorithm based on the post-disaster 

image  

(3) Experimental semivariogram computed within the objects  

(4) Generation of semivariogram indices, as proposed by Balaguer et al. (2010) 

(5) Selection of the most important semivariogram indices by PCA analysis  

(6) Change detection using the Support Vector Machine (SVM) algorithm  

(7) Evaluation by the confusion matrix and its accuracy measures 
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Figure 1: Methodology workflow. 

 

Study area and data  

 The district of Mariana is located in the central region of Minas Gerais 

state, Brazil, between the 43º 05’ 00” and 43º 30’ 00” meridians and the 20º 08’ 

00” and 20º 35’ 00” parallels (Figure 2). The district includes the upper portion 

of the Doce River basin and is characterized by hilly relief and abundant 

tablelands. The climatic conditions are typical of humid tropical highlands, with 

hot and rainy summers. The vegetation is predominantly composed of Atlantic 

Forest and Savanna biomes.  
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Figure 2: Study area location within Minas Gerais state, Brazil. 

 

 We acquired Landsat 8 satellite images from the United States 

Geological Survey for Earth Observation and Science (USGS/EROS) from 

October 2015 (predisaster) and November 2015 (post-disaster), at the processing 

level of Landsat Surface Reflectance, with the appropriate geometrical 

corrections and reflectance values to the soil level. We then generated the NDVI, 

which is based on quotients and uses the spectral bands from the red and near-

infrared bands to enhance vegetative characteristics and minimize the effects of 

shadows caused by the terrain’s topography (Berra et al., 2012; Vorovencii, 
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2014). The values of this index vary from -1 to 1, calculated as: 

NDVI=
ρNIR-ρRED

ρNIR+ ρRED
      (1) 

where ρNIR and ρRED are the reflectance values for the near-infrared and red 

wavelengths, respectively. 

 

Image segmentation  

 In the object-based change detection method, pixels are not individually 

classified but rather combined into homogenous groups (objects) and classified 

together (Chen et al., 2012; Desclée; Bogaert; Defourny 2006; Hussain et al., 

2013). The object is characterized using a large number of descriptive features 

derived from the images and becomes the basic unit of analysis. In comparison 

with pixel-based methods, additional spatial and contextual information can be 

obtained from the objects (Blaschke 2010; Hussain et al., 2013; Ruiz et al., 

2011; Wu et al., 2015).  

 Object-based semivariogram analysis is based on the delimitation of 

homogeneous groups, in which the objects’ boundaries are pre-defined and the 

semivariogram features are extracted from each object. Multiresolution 

segmentation is a basic procedure in the eCognition software employed in this 

study; we used a multiresolution segmentation algorithm (Baatz; Schäpe, 2000) 

to generate objects based on the post-disaster NDVI image. The size, shape, and 

spectral variation of each object are controlled by three key segmentation 

parameters: shape, compactness, and scale. The shape parameter was set to 0.1 

and the compactness to 0.5. The most critical step is the selection of the scale 

parameter, which controls the size of the image objects. This sets a threshold of 

homogeneity determining how many neighboring pixels can be merged together 

to form an image object (Mui et al., 2015). We tested values from 80 to 200 for 

this parameter and obtained the best segmentation result using the value 150. 

Figure 3 shows the image segmentation procedure.  
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Figure 3: Image segmentation procedure for feature extraction. 

 

Experimental semivariogram  

 For continuous variables, such as the NDVI, the experimental 

semivariogram is defined as half of the average squared difference between 

values separated by a given lag, where this lag is a vector in both distance and 

direction (Atkinson; Lewis, 2000). The semivariance is defined from the spatial 

variance of measures performed in samples from a determined distance “h”, 

being the sum of the squares’ difference between the sampled values separated 

by a distance “h”, divided by two times the number of possible pairs on each 

distance. This was estimated using Equation 2: 

 

γ(h)=
1

2N(h)
∑ [Z(x)-Z(x+h)]2N(h)

i=1       (2) 

 

 where N(h) is the number of pairs of points separated by the distance h, 

Z(x) is the value of the regionalized variable in the point x, and Z(x+h) is the 

value of the point (x+h).  

 The semivariogram is the graphic representation of the spatial variance 
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versus distance h, which allows an estimate of the variance value for different 

combinations of pairs of points. The semivariance functions are characterized by 

three parameters: sill (σ²), range (φ), and nugget effect (τ²). The sill parameter is 

the plateau reached by semivariance values and shows the quantity of variation 

explained by the spatial structure of the data. The range parameter is the distance 

where the semivariogram reaches the sill, showing the distance until the data are 

correlated. The nugget effect is the combination of sampling errors and 

variations that happen in scales smaller than the distance between the sampled 

points (Curran, 1988).  

 Since we wanted to characterize the NDVI spatial variability to obtain 

maximum detail, we used a onepixel interval between two lags (the distance 

between pairs of points in the semivariogram calculation), so the lag size was 

equivalent to the pixel size (30 m). After some experimentation to find an 

appropriate optimal lag distance, we fixed the number of lags at 20 pixels 

(resulting in a lag distance of 600 m) to ensure that sill values would provide a 

concise description of data variability. According to Woodcock, Strahler and 

Jupp (1988), the size of the samples needs to be larger than the range of 

influence to characterize the initial part of the semivariogram and large enough 

to reveal the presence of periodicity. 

 

Set of semivariogram indices  

 The set of semivariogram indices we used was described by Balaguer et 

al. (2010) based on the points defining the experimental semivariogram. These 

indices describe the shape of the experimental semivariograms and therefore the 

properties that characterize the spatial patterns of the image object (Table 1); 

they have been categorized according to the position of the lags used in their 

definition (near the origin and up to the first maximum). The devised feature 

groups provide information such as the change ratio, slope, concavity, and 
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convexity (curvature) level of the images and data variability.  

 

Table 1: Semivariogram indices described by Balaguer et al. (2010).  

Group Description Formula 
a 1. Ratio between the values of the 

total variance and the semivariance 

at first lag 
RVF=

Variance

γ1
 

 2. Ratio between semivariance 

values at second and first lag 
RSF=

γ2

γ1
 

 3. First derivative near the origin 
FDO=

γ2- γ1

h
 

 4. Second Derivative at third lag 
SDT=

γ4- 2γ3+ γ2 

h
2

 

b 5. First maximum lag value FML=hmax_1 

 6. Mean of the semivariogram values 

up to the first maximum 
MFM=

1

Max_1
∑γi 

 7. Variance of the semivariogram 

values up to the first maximum 
VFM=

1

Max_1
∑(γi-γ)² 

 8. Ratio between the semivariance at 

first local maximum and the mean 

semivariogram values up to this 

maximum 

RMM=
γ

Max_1

γ
Max_1
Mean

 

 9. Difference between the mean of 

the semivariogram values up to the 

first maximum (MFM) and the 

semivariance at first lag 

DMF=MFM- γi 

 10. Second-order difference between 

first lag and first maximum 
SDF=γ

Max_1
-2γMax_1

2

+ γ2 

 11. Semivariance curvature 

AFM=
h

2
(γ1+2 ( ∑ γ1

max_1-1

i=2

) +γ
max_1

)

− (γ1(hmax_1-h1)) 

a=Indices that provide semivariogram information near the origin; b=Indices 

that provide semivariogram information at first maxima. 

 

 The semivariogram texture description is traditionally achieved by 

fitting a mathematical function (i.e. exponential model, gaussian model and 

spherical model) whose parameters (such as sill and range) are adopted as 
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texture measures (Chen; Gong, 2004; Woodcock; Strahler; Jupp, 1988). This 

method often suffers from the selection of a proper function because simple 

functions are not sufficiently distinguishable and complex ones may be subject 

to overfitting (Chica-Olmo; Abarca-Hernández, 2000). The semivariogram 

indices are free of the problems caused by modeling the experimental 

semivariogram and thus have become more popular for describing the spatial 

properties of remote sensing images (Wu et al., 2015). 

 

Feature extraction  

 We focused on two classes in this study: (1) no change objects 

consisting of areas with the same cover in both images and (2) change objects 

consisting of areas affected by flooding from the dam failure. A data set of 200 

objects (with 100 objects per class) was sampled with 50% of the samples 

randomly chosen as training samples and the rest used as evaluation samples. 

Within the objects, the semivariogram indices were extracted in both images 

using FETEX 2.0 software (Ruiz et al., 2011), a feature extraction tool for 

object-based image analysis.  

 Due to the high number of indices, some of the information they provide 

may overlap with others, and so are probably redundant in terms of efficiently 

describing the objects. Thus we employed principal component analysis (PCA) 

in order to group and interpret the redundancies in the information provided by 

the analyzed semivariogram indices. By choosing the variables with higher 

impact on the first two principal components, we were able to reduce the number 

of variables, avoid redundant variables (multicollinearity), and make further 

analyses more efficient. 

 

Change detection and evaluation  

 In order to detect changes in the images, we chose to use a support 
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vector machine (SVM) algorithm. Consisting of a group of theoretically superior 

machine learning algorithms, this approach is especially advantageous in the 

presence of heterogeneous classes for which only a few training samples are 

available (Wu et al., 2015).  

 SVMs operate by assuming that each set of inputs will have a unique 

relation to the response variable, and that the grouping and relation of these 

predictors to one another is sufficient to identify rules that can be used to predict 

the response variable from new input sets. To do this, SVMs project the input 

space data into a feature space with a much larger dimension, enabling linearly 

nonseparable data to become separable in the feature space. For example, this 

method has been successfully used in forestry classification problems (García-

Gutiérrez et al., 2015; Wu et al., 2015). We used the Gaussian or radial basis 

function (RBF) as the Kernel function and performed change detection 

evaluation using a confusion matrix (Congalton 1991) and its accuracy 

measures, validating the results with a manually-produced map. 

 

RESULTS AND DISCUSSION 

 

Semivariogram indices selection  

 By computing the PCA over the complete set of semivariogram features, 

we concentrated most of the data’s variability in the first components; the 

resulting visualization of the data allows for a better understanding of 

redundancies (Figure 4). The proportion of variability explained by PC1 and 

PC2 (the first two principal components) was 53.15%. 
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Figure 4: Projection of proposed indices in principal component planes (PC1-

PC2). 

 

 As a result of PCA analysis for the group of indices that provide 

information near the origin, we removed RVF and RSF and included FDO and 

SDT as input data for the change detection analysis. After analyzing the indices 

that provided information up to the first maxima, we also removed AFM, VFM, 

FML and RMM and included DMF and SDF as further input data. We selected 

the variables that presented higher values in module in the first two components 

(Table 2). 
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Table 2: PCA eigenvalues. 

Group Indices PC1 PC2 PC3 PC4 PC5 PC6 

a 

RVF 1.454 0.138 0.901 -0.234 -0.351 -1.001 

RSF 1.098 0.238 1.362 1.461 -0.613 -0.158 

FDO 1.830 0.627 0.007 1.165 0.468 0.131 

SDT 0.352 -0.969 -1.340 0.921 0.526 -1.536 

 FML 1.101 -0.908 0.473 -1.401 -0.373 -0.692 

b 

MFM 2.410 0.359 -0.220 0.105 0.428 0.260 

VFM 2.107 -0.252 -0.824 -0.113 0.169 0.653 

DMF 2.454 0.230 -0.280 -0.209 0.108 0.174 

RMM 0.916 -1.817 1.014 0.320 -0.365 0.328 

SDF -0.122 -2.230 -0.357 0.399 0.071 0.633 

AFM 2.253 0.075 -0.280 -0.887 -0.142 0.010 

a=Indices that provide semivariogram information near the origin; b=Indices 

that provide semivariogram information at first maxima. 

 

Exploring the semivariogram indices  

 We analyzed the semivariogram curves considering both the change 

(Figure 5a) and no-change (Figure 5b) classes. In the former, the image’s spatial 

variability changed considerably from native vegetation (pre disaster image) to 

flooded areas (post-disaster image). The flooded areas had a low overall 

variability due to the homogeneity of NDVI pixels with low internal variation. 

The high relative variability of native vegetation is explained by the presence of 

high and low NDVI values in the same object. In contrast, the semivariogram 

curves for the no-change objects presented similar values.  

 The pre-selected semivariogram indices decreased (FDO and DMF) or 

increased (SDT and SDF) considerably in the presence of changes (Figure 6a) 

and remained almost constant in the absence of changes (Figure 6b). 
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Figure 6: Values of pre-selected semivariogram indices from image epoch 1 and 

image epoch 2 for: (a) change objects; (b) no-change objects 

 

 FDO is the first derivate near the origin and represents the slope of the 

semivariogram at the first two lags; it shows the variability changes of the data 

at short distances. FDO presented high values for heterogeneous objects (Figure 

7a) and low values for homogeneous objects (Figure 7b). SDT is the second 

derivative at the third lag. This index approximates the value of the second 

derivative of the semivariogram at the third lag. It quantifies the concavity or 

convexity level of the semivariogram at short distances, corresponding with the 

heterogeneity of the objects in the image. Negative values indicate that the 

semivariogram is convex and thus that the image is heterogeneous at short 

distances. SDT presented high negative values for change objects (Figure 7a) 

and low negative values for no-change objects (Figure 7b).  

 DMF is the difference between the mean of the semivariogram values 

up to the first maximum (MFM) and the semivariance at the first lag (difference 

mean of semivariogram and first lag semivariance). This index shows the 

decreasing rate of the spatial correlation in the image up to the lags where the 

semivariogram theoretically tends to be stabilized. The results showed a high 
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variation of DMF values for change objects and a relatively low variation of 

DMF values for no-change objects. SDF is the second-order difference between 

the first lag and first maximum. This parameter provides information about the 

semivariogram curvature in that interval, also representing the low frequency 

values in the image. SDF values presented a high variation for change objects 

and low variation for no-change objects. 

 

 

Figure 7: Semivariogram representation of the total data variance for the FDO 

and SDT indices: (a) heterogeneous objects, and (b) homogeneous objects. 

 

Change detection assessment  

 The classification accuracy measures, using the selected semivariogram 

indices as input for the SVM algorithm, are shown in Table 3. The 

semivariogram indices showed their effectiveness in the classification of change 

and no-change classes, presenting an overall accuracy of 95.12% and producer’s 

and user’s accuracies higher than 85%.  
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Table 3: Confusion matrix of the support vector machines classification. 

Confusion Matrix Producer’s accuracy (%) User’s accuracy (%) 

Change 100.00 85.71 

No Change 93.10 100.00 

Overall accuracy (%) 95.12 

Kappa 0.88 

 

 Figure 8 shows the change detection map (producer’s accuracy = 

100%); all objects classified as no-change in the map are correct (user’s 

accuracy = 100%). However, according to the validation data set, there are still 

some misclassification problems with 14.29% of the objects classified 

erroneously as change (user’s accuracy = 85.71%) and the omission of 6.9% of 

change-class objects in the map.  

 

Figure 8: Change detection results. 

 

 In summary, the semivariogram indices synthesized the most relevant 

information about the shape of the semivariogram (slope) in a few features. 
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They identified the singular points (maxima) and enhanced the information 

contained in the first lags, where spatial correlation at short distances is higher. 

These indices also have a specific meaning, allowing them to be easily 

interpreted. 

 

CONCLUSIONS 

 

 In this study, we used spatial context to detect land cover changes 

resulting from a Brazilian dam failure using an object-based approach. We 

explored and investigated the potential of semivariogram indices as inputs for 

training the support vector machines algorithm for change detection. Our results 

indicate that landscape changes can be accurately detected using only textural 

features calculated from semivariograms derived from NDVI images.  

 The semivariogram indices selected by PCA analysis showed their 

effectiveness in the classification results, presenting high accuracy values. Using 

semivariograms as the main geostatistical tool to describe spatial variability 

standards in data means that indices derived from NDVI variability have the 

potential to discriminate between homogeneous and heterogeneous classes 

within objects. This approach can be used in many other contexts for rapid and 

accurate assessment of such land-cover changes.  

 Further research should explore the use of geostatistical features to 

characterize the degree of changes as well as the impact of the initial land cover 

class and the image segmentation epoch on the analysis results. Other studies 

could analyze the influence of seasonality on change detection in vegetated 

areas. 
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Abstract 

A new method for remote-sensing land-use/land-cover (LULC) change 

detection is proposed to eliminate the effects of forest phenology on 

classification results. This method is insensitive to spectral changes caused by 

vegetation seasonality and uses an object-based approach to extract 

geostatistical features from bitemporal Landsat TM (Thematic Mapper) images. 

We first create image objects by multiresolution segmentation to extract 

geostatistical features (semivariogram parameters and indices) and spectral 

information (average values) from NDVI (normalized difference vegetation 

index), acquired in the wet and dry seasons, as input data to train a Support 

Vector Machine algorithm. We also used the image difference traditional 

change-detection method to validate the effectiveness of the proposed method. 

We used two classes: (1) LULC change class and (2) seasonal change class. 

Using the most geostatistical features, the change detection results are 

considerably improved compared with the spectral features and image 

differencing technique. The highest accuracy was achieved by the sill (σ2 

overall variability) semivariogram parameter (95%) and the AFM (area first 

lag–first maximum) semivariogram index (88.33%), which were not affected by 

vegetation seasonality. The results indicate that the geostatistical context makes 

possible the use of bitemporal NDVI images to address the challenge of 

accurately detecting LULC changes in Brazilian seasonal savannahs, 

disregarding changes caused by phenological differences, without using a dense 

time series of remote-sensing images. The challenge of extracting accurate 

semivariogram curves from objects of long and narrow shapes requires further 

study, along with the relationship between the scale of segmentation and image 

spatial resolution, including the type of change and the initial land-cover class. 

Keywords: geostatistical; semivariogram; remote sensing; change 

detection; feature extraction; vegetation seasonality  
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1. Introduction 

 Change detection is the process of identifying changes from analysing 

multitemporal images (Radke et al. 2005). Such changes may be due to natural 

causes (natural forest phenology) or land-use/land-cover (LULC) alterations 

(e.g. urban growth and deforestation; Ghosh, Roy, and Ghosh 2014). A 

significant challenge in remote-sensing change detection is accurately extracting 

LULC changes while disregarding those associated with phenological difference 

(Chen et al. 2013, 2014; Jin et al. 2013). When images from different seasons 

are acquired, changes caused by phenological differences are inevitable and pose 

a significant challenge to LULC change detection (Lu et al. 2016). 

 Utilizing change detection based on time series of normalized difference 

vegetation index (NDVI) could avoid this problem, since it can accurately track 

seasonal characteristics and capture information on vegetation phenology (Chen 

et al. 2015). Verbesselt et al. (2010) proposed a generic change detection 

approach for time series by detecting and characterizing breaks for additive 

seasonal and trend (BFAST) to separate disturbances such as deforestation, 

urbanization, floods, and fire from phenological changes. Jin et al. (2013) 

proposed an object-based spatial and temporal vegetation index unmixing model 

to solve problems related to phenological differences, using spectral data from 

Moderate Resolution Imaging Spectroradiometer NDVI time series in Landsat 

objects. Hamunyela, Verbesselt, and Herold (2016) proposed a new approach 

that reduces seasonality in satellite image time series using spatial context in a 

pixel-based approach. However, implementation of these methods is dependent 

on the availability of an appropriate time series, without cloud contamination 

and appropriate image temporal resolution. 

 Blended data with high spatio-temporal resolution could also be used to 

monitor LULC changes and eliminate those changes associated with 

phenological differences (Lu et al. 2016). However, these methods are generally 
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pixel based and are sensitive to registration errors. In object-based image 

analysis (OBIA) approaches, pixels are not individually classified, but combined 

into homogeneous groups (objects) and classified together (Mui, He, and Weng 

2015), optimizing the delineation of individual features, resulting in more 

accurate change detection (Johansen et al. 2010) by reducing small spurious 

changes (Hussain et al. 2013). 

 In comparison with pixel-based approaches, additional spatial 

information can be obtained from objects in OBIA (Blaschke 2010;Ruiz et al. 

2011; Hussain et al. 2013; Wu et al. 2015) to improve change detection analysis 

(Li and Leung 2002;Wu etal. 2010; Chen et al. 2012). The semivariograms of 

geostatistics are used as spatial measures (Curran 1988; Woodcock, Strahler, and 

Jupp 1988) and have widely been used in heterogeneity analyses (Wu et al. 

2000; Garrigues et al. 2006; Garrigues et al. 2008; Cadenasso, Pickett, and 

Schwarz 2007; Balaguer-Beser et al. 2013; Huang et al. 2013;Lauschetal. 

2013;Qiu et al. 2013), image classification (Balaguer et al. 2010; Balaguer-Beser 

et al. 2011; Yue et al. 2013;Powers et al. 2015;Wu et al. 2015; Silveira et al. 

2017), and change detection studies (Sertel, Kaya, and Curran 2007; Costantini 

et al. 2012;Acerbi Júnior et al. 2015; Gil-Yepes et al. 2016). Most of the studies 

did not use the spatial context to help with change detection to climate seasonal 

variations (Zhu 2017), except Hamunyela, Verbesselt, and Herold (2016), which 

used NDVI spatially normalized to reduce phenological difference in time 

series. 

 Here, instead of using dense time series to minimize the effects of forest 

phenology on LULC change detection, we exploit the spatial context, 

represented by geostatistical features, using bitemporal NDVI images and an 

object-based approach. The main objective of this study was to develop a 

method for remote-sensing LULC change detection that is insensitive to changes 

caused by vegetation seasonality, without the need to use a dense time series. 
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We focused on the following research questions: (1) Do changes caused by 

vegetation seasonality affect the spatial variability of NDVI values? (2) Are 

geostatistical features derived from semivariograms able to accurately detect 

LULC changes? 

 We utilize NDVI derived from bitemporal Landsat TM (Thematic 

Mapper) images obtained during the wet and dry seasons to assess the potential 

of individual geostatistical features to accurately detect LULC changes, 

disregarding those associated with phenological differences, in a Brazilian 

seasonal savannah. Brazilian savannah is a highly heterogeneous biome in terms 

of biodiversity and vegetation types, and it shows strong seasonality, where 

phenological differences affect the results of LULC change detection. 

 

2. Materials and methods 

 The study exploits the potential of individual geostatistical features 

extracted from bitemporal NDVI images to accurately detect LULC changes, 

disregarding those associated with phenological differences, using an object-

based approach. We tested (1) spectral and (2) geostatistical features as input 

data to train Support Vector Machine (SVM) algorithm and also we used the (3) 

NDVI image difference as a traditional change detection method to compare the 

proposed method.  

 We defined two classes: (1) LULC change objects and (2) seasonal 

change (SC) objects. The methodology consists of the following main steps, also 

presented in Figure 1. 

(1) Image acquisition and NDVI transformation  

(2) Image segmentation by a multiresolution algorithm using the first epoch 

wavebands of Landsat TM to generate the image objects 

(3) Feature extraction from NDVI of wet and dry seasons computed within 

objects  
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(4) Change detection  

(5) Evaluation by confusion matrix and accuracy measurement 

 

 

Figure 1. Methodology workflow. 

 

2.1. Data and study area 

 The study area, the municipality of São Romão, is located in northern 

Minas Gerais (MG), Brazil (Figure 2). The main vegetation type is typical of a 

tropical savannah, with physiognomies ranging from grasslands to densely 

vegetated areas dominated by shrubs and trees. The study area occupies 2,200 

km², of which approximately 84% exhibits native vegetation. The gradient of 

vegetation density in the area is noteworthy, containing areas of grassland with 

no shrubs or trees, sparse and dense shrublands, as well as woodlands dominated 

by palm trees along watercourses. 
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Figure 2. Location of Minas Gerais (MG) in Brazil, MG Biomes, São Romão, 

and its political boundaries. 

 

 Landsat TM images from May 2010 and September 2011 were obtained 

from the United States geological survey for earth observation and science 

(USGS\EROS). The images were acquired at the CDR processing level (Landsat 

surface reflectance climate data record), with the necessary geometric 

corrections and reflectance values at the ground level. Image selection was based 

on the following criteria: presence of vegetation seasonality, occurrence of 

deforestation, and absence of clouds.   

 The NDVI was calculated for both Landsat TM images. This index is 

based on quotients, and uses the red and near-infrared spectral bands to enhance 

vegetation cover and minimize the effects of shadows caused by the terrain’s 

topography (Vorovencii 2014).  

 According to Peel, Finlayson and McMahon (2006), the climate in the 

region is typical of a tropical savannah, where rains are concentrated from 
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October to May, characterizing a pronounced seasonality in the region. The 

Brazilian savannah vegetation is influenced by strong climatic seasonality with a 

dry season between May and September (Schwieder et al. 2016). For this reason, 

we used the images acquired on May 2010 as representatives of the end of the 

rainy season (high NDVI values), due to the rainfall in the previous months. On 

the other hand, images acquired on September 2011 were used as representatives 

of the end of the dry season (low NDVI values), due to the lack of rainfall in the 

previous months. Figure 3 shows the NDVI average values from savannahs 

vegetation object in both seasons.  

 

Figure 3. Monthly precipitation pattern: Example object’s average NDVI values 

in (a) May 2010 and (b) September 2011.  

 

2.2. Class definition 

 The study focused on two classes: (1) LULC change areas comprising 

deforestation and burned areas (mainly savannahs that were converted to bare 

soil and pastures, and (2) seasonal change (SC) areas comprising the same cover 
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in both epochs, albeit with changes caused by vegetation seasonality (Figure 4).  

These classes were set up according to prior visual interpretation of vegetation 

maps (Carvalho and Scolforo 2008), which described qualitative and 

quantitative information. 

 

Figure 4. Examples of class definitions using Landsat TM image R4 G5 B3. 

Land use/land cover (LULC) change class: (a) savannah’s first epoch during the 

wet season; b) savannah deforestation in the second epoch during the dry season. 

Seasonal change (SC) class: (c) savannah’s first epoch during the wet season; (d) 

savannah’s second epoch during the dry season. 

 

 A data set of 200 objects well-distributed over the study area, with 100 

samples per class, was assigned based on visual interpretation. Fifty per cent of 

the samples were randomly chosen as training samples, while the rest were used 

as test samples. The objects used to train (50) and evaluate (50) the LULC 

change class were collected considering both expressive and slight changes, 

comprising both small and big changes within the objects (Figure 5). And also, 

the objects used to train (50) and evaluate (50) the SC class were collected from 

preserved savannah’s vegetation areas, affected by a pronounced seasonality 

from the wet to the dry season. 
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Figure 5. Examples of samples comprising (a) expressive and (b) slight land 

use/land cover (LULC) changes. 

 

2.3. Multiresolution segmentation 

 The first step in OBIA and object-based change detection (OBCD) is 

image-object extraction, which is achieved by segmentation or stratification of 

the images (Addink, Van Coillie, and de Jong 2012) into spatially continuous 

and homogeneous objects (Hussain et al. 2013). Image segmentation is the core 

of OBIA, and various segmentation techniques have been developed around it 

(Blaschke 2010). Multiresolution segmentation (Baatz and Schäpe 2000) is a 

basic procedure available in eCognition software for object-based image 

analysis, and was used here to produce image objects as a first step prior to 

further feature extraction and change detection analysis. According to 

Tewkesbury et al. (2015) three different choices might be considered when 

defining the analysis unit (image objects) for multitemporal object-based image 

analysis:  

 (i) image-object overlay: image-objects are generated by segmenting 

one of the images in the time series. A comparison against other images is then 

made by simple overlay;  
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 (ii) image-object comparison: image-objects are generated by 

segmenting each image in the time series independently;  

 (iii) multitemporal image-object: image-objects are generated by 

segmenting the entire time series together. 

 Our study focused on the image-object overlay approach. We chose this 

technique because it provides a more meaningful framework for spatial 

measures (i.e. geostatistical features) (Tewkesbury et al. 2015), capable of 

capturing the intra-object heterogeneity (Listner and Niemeyer 2011). Image 

segmentation used wavebands of the Landsat TM image acquired in May 2010 

(Epoch 1). Three key segmentation parameters (shape, compactness, and scale) 

control the size, shape, and spectral variation of segmented image objects. The 

shape parameter was set to 0.1 and compactness was set to 0.5. The most critical 

step is the selection of the scale parameter, which controls the size of the image 

objects. The scale parameter sets a homogeneity threshold that determines the 

number of neighbouring pixels that can be merged to form an image object 

(Mui, He, and Weng 2015).  

 The scale of segmentation directly influences the size of the objects 

connected to the semivariogram predefined criteria (lag distance) and the 

minimum number of pixels inside each object necessary to generate the 

semivariogram. The scale parameter was set to 200 to guarantee a minimum 

number of samples (25 pixels). To find this appropriate scale parameter we used 

a ‘‘trial and error” approach (Duro, Franklin, Dubé 2012; Chen et al. 2015). The 

segmentation results were evaluated based on a visual assessment (Zhang, Fritts, 

and Goldman 2008; Whiteside, Boggs, and Maier 2011). 

 

2.4. Feature extraction 

 In this section, we describe the geostatistical (the semivariogram 

parameter and the set of semivariogram indices), and the spectral features 
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(NDVI average values) extracted within the extent of the objects used to train 

the SVM algorithm.   

 We used the geostatistical features achieved by the following two ways: 

(1) modelling the semivariogram by fitting a model to extract semivariogram 

parameters (Acerbi Júnior et al. 2015) and (2) by using indices that synthesize 

the most relevant information about the shape of the semivariogram and enhance 

the spatial information (Balaguer et al. 2010). As spectral feature we used the 

average NDVI values inside the objects.  

 

2.4.1 Geostatistical features: semivariogram parameter 

 We used as semivariogram parameter, the overall variability (sill - σ²) of 

NDVI values inside the objects, captured by the semivariogram.  The 

semivariogram, was originally developed for the mining industry and has since 

been adapted for application to textural information of remotely sensed images 

because it is a relatively simple function for investigating spatial correlations 

(Miranda et al. 1996). 

The semivariogram is a graphical representation of the spatial variability 

in a given dataset (Cohen, Spies and Bradshaw 1990). The relationship between 

a pair of pixels can be calculated by the variogram function (Eq. 1), called 

2(h), which corresponds to the mathematical expectation of the squared 

difference between pairs of points separated by a distance h. The semivariogram 

function depends on the location x and the distance between samples h. For the 

variogram to be based solely on the distance between the sampling units, it is 

necessary to adopt the intrinsic hypothesis (stationarity), which implies that the 

variance of the differences between two sample points depends only on the 

distance h. 

2 (h) = E {(Z(x)-Z(x+h))
2
}                                            (1) 

 For continuous variables such as the NDVI, the experimental 
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semivariogram is defined as half of the average squared difference between the 

values separated by a given lag, where the lag is a vector having both distance 

and direction (Atkinson and Lewis 2000). It was estimated using Eq. 2: 

 (h)= (
1

2N(h)
) ∑ (Z(x)-Z(x+h))

2N(h)

i=1                                   (2) 

where  (h) is the estimator of the semivariance for each distance h, N(h) is the 

number of pairs of points separated by the distance h, Z(x) is the value of the 

regionalized variable at point x, and Z(x+h) is the value at point (x+h). 

The graph of spatial variance versus distance h represents the 

semivariogram (Figure 6), from which the estimated variance for different pairs 

of point combinations can be obtained. The semivariance functions are 

characterized by three parameters: sill (σ²), range (φ), and nugget effect (τ²). The 

σ² parameter is the plateau reached by semivariance values, and shows the 

quantity of variation explained by the spatial structure of the data. The φ 

parameter is the distance at which the semivariogram reaches the sill; it shows 

the distance to which the data are correlated. The τ² is the combination of 

sampling errors and variations that occur at scales smaller than the distance 

between the sampled points (Curran 1988). 

 

Figure 6. Classical semivariogram:   (h) - estimator of the semivariance for 

each distance h; (σ²) – sill; (φ) – range; (τ²) – nugget effect. 
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 When the semivariogram is calculated for each individual object, an 

important factor to be considered is the lag distance. It should not be larger than 

the spatial extent of the object; on the other hand, an exceedingly small distance 

fails to provide a complete description of textural features. We attempted to find 

an optimal lag distance to ensure that σ² values would provide a concise 

description of data variability. We fixed the number of lags as 20 pixels and the 

lag size equivalent to image spatial resolution (30 m), resulting in a lag distance 

of 600 m. According to Woodcock, Strahler, and Jupp (1988), the lag distance 

needs to be larger than the range of influence in order to characterize the initial 

part of the semivariogram, and large enough to reveal the presence of 

periodicity.  

The theoretical semivariograms were estimated by fitting mathematical 

models to the experimental semivariogram using weighted least squares. 

Exponential, spherical, and Gaussian models were tested. The fitted models 

were validated through cross-validation, by analysing the reduced mean error 

(ER) and the standard deviation of reduced errors (SRE). 

 

2.4.2. Geostatistical features: set of semivariogram indices 

 We chose the set of semivariogram indices included in the object-based 

descriptive feature extraction software FETEX 2.0 (Ruiz et al. 2011). These 

indices have been categorized according to the position of the lags used in their 

definition (Table 1). The groups of features are devised to provide information 

such as the change ratio, slope, levels of image concavity and convexity 

(curvature), and data variability (Balaguer et al. 2010).  
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Table 1. Indices described in Balaguer et al. (2010). 

Index Description Formula 

Near the origin 

RVF 

(Ratio 

variance – 

first lag) 

Ratio between total 

variance and 

semivariance at first lag 
RVF = (

Variance


1

) 

RSF 

(Ratio 

second – 

first lag) 

Ratio between 

semivariance values at 

second and first lags 
RSF = (


2


1

) 

Up to the first maximum 

MFM 

(Mean first 

maximum) 

Mean of semivariogram 

values up to the first 

maximum 

MFM = (
1

max1

) ∑
i
 

DMF 

(Difference 

mean first 

lag) 

 

Difference between mean 

semivariogram 

value up to the first 

maximum (MFM), and 

semivariance at first lag 

DMF = (MFM)- 
i
 

RMM 

(Ratio 

maximum 

mean) 

Ratio between 

semivariance at first local 

maximum, and mean 

semivariogram values up 

to this maximum 

RMM = (


 max1

 max1
mean

) 

AFM 

(Area first 

lag – first 

maximum) 

Semivariance curvature 

AFM = 
h

2
(

1
+2 ( ∑ 

1

max1-1

i=2

) + 


max1

) - (
1
(hmax1

- h1)) 

 

 

2.4.3. Spectral features 

 As a complement to geostatistical features, the average NDVI values of 

the pixels inside each object were included to serve as a spectral feature. This 

allowed comparison of the performance of spatial versus spectral features. 
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2.5. Change detection 

2.5.1. Features analysis and classification  

 We analysed the potential of the individual geostatistical and spectral 

features to accurately detect LULC changes, by the following two ways: (i) 

semivariogram and graphic analysis and (ii) change detection classification. The 

precept was: If from the wet to the dry season, the individual features values 

remain constant and also increase or decrease in the presence of LULC changes, 

the feature is able to discriminate between the classes, due to it is not affected by 

vegetation seasonality. 

 We chose the SVM algorithm to perform the change detection 

classification. As a group of theoretically superior machine learning algorithms, 

SVM algorithms appear to be especially advantageous in the presence of 

heterogeneous classes for which only a few training samples are available (Wu 

et al. 2015). 

 As described by Kulkarni and Lowe (2016), SVMs are a supervised 

nonparametric statistical learning method. In their simplest form, SVMs are 

binary classifiers that assign the given test sample to one of the two possible 

classes. SVM algorithms are extended to nonlinear cases by mapping samples 

within a multidimensional feature space using a kernel function. SVMs are 

particularly appealing in remote sensing image processing because of their 

ability to successfully handle small training datasets, often yielding higher 

classification accuracy than traditional methods (Mantero, Moser and Serpico 

2005). 

The radial basis function (RBF) kernel was used for its effectiveness and 

accuracy (Zuo, John and Carranza 2011; Shao and Lunetta 2012). The algorithm 

used is implemented in WEKA 3.8 software under the sequential minimal 
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optimization (SMO) function. Values of parameters C and σ (bandwidth or 

influence range of each training point in the RBF) were tested within the interval 

10
i
)
i=-3,-2,-1,0,1,2,3,, where the least squared mean error configuration was chosen 

for application. The best combination was identified using a cross-validation 

method. 

The SVM classifier consists of a selection of image objects used as 

samples to train the SVM module, after which the classifier is provided to all 

objects to derive the final classification. To perform a classification accuracy 

assessment, it is necessary to compare two sources of information:  the 

classification map produced and reference test samples (Jensen 2004). The 

group of samples selected manually by visual interpretation was divided into 

two parts, one for training the algorithm and the other for classification 

assessment (see Section Class definition).  

 

2.5.2. Traditional change detection method: image differencing technique 

 To validate the effectiveness of the proposed method we applied an 

image differencing technique (Lu and Brondízio 2004). This technique has long 

been used to highlight areas of image change quickly with minimal supervision 

and is still in use today, typically applied to image-objects (Desclée, Bogaert and 

Defourny 2006; Tewkesbury et al. 2015). Similar to pixel-based change 

detection, OBCD can be performed by directly comparing image-objects defined 

by a threshold (Chen et al. 2012; Constantini et al. 2012). Selecting threshold 

NDVI difference values to indicate actual land cover change is a decision-

making process that can be modified based on field verification and interactive 

image interpretation.  

 Since the threshold value is often intuitively defined by researchers, a 

bias may be introduced. Thresholding NDVI differences based upon SD 

(standard deviation) values is one approach that has been commonly utilized 
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(Coppin and Bauer 1996; Morisette and Khorram 2000). This approach was 

implemented as a consistent way and arbitrary NDVI threshold values at plus 

and minus one SD from zero difference were used to discriminate the binary 

classes of change from no-change (Coulter et al. 2011).   

 Change objects were identified as those with NDVI difference values 

less than negative one SD from zero difference or greater than one SD from zero 

difference. Objects classified as no-change were those with values within or 

equal to one SD from zero difference. We did not test threshold values, due the 

intention of applying this technique is for comparative purpose.  The choice of 

one SD reduces the possibility of analysing either the pattern of background 

noise that could be obtained with much higher thresholds (Zurlini et al 2006) 

and also, was appropriate given our knowledge of changes within the study area.  

 

2.6. Evaluation of change detection 

 We assessed the quality of the change detection classification generating 

a confusion matrix (Congalton 1991) and comparing its accuracies (1) the 

overall accuracy, which is computed by dividing the total number of correct 

results by the total number of samples in the error matrix; (2) the absolute error 

and confidence interval; (3) the producer's accuracy, which indicates the 

probability of a reference object being correctly classified and is actually a 

measure of omission errors; (4) the user's accuracy, which is indicative of the 

probability that a sample classified on the image actually represents that 

category on the ground; and (5) the kappa coefficient (k), which is a statistic that 

measures the inter-rater agreement for qualitative items. It is generally thought 

to be a more robust measure than simple percent agreement calculation, since it 

takes into account the possibility of the agreement occurring by chance.  

 We compared the individual performance of SVM algorithm trained by 

geostatistical and spectral features and the image differencing using one SD as 
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threshold (Figure 7).  

 

 

Figure 7. Features used to train the SVM algorithm and the NDVI image 

differencing change detection method. 

 

3. Results and discussion 

3.1. Evaluation of geostatistical and spectral features 

 We first analysed the potential of the individual features to discriminate 

between LULC change class and SC class. The semivariograms reached the σ² 

within the calculated distance, indicating that the lag distance of 600 m was 

large enough to encompass the entire spatial variability of the NDVI values 

within the objects. The objects were identified as homogeneous or 

heterogeneous: homogeneous objects have internally stable structures without 

distinct textural variation. Their semivariograms are similar to Figures 8a, c, and 

d; heterogeneous objects (Figure 8b) usually contain abundant distinct textural 

information and show a more complicated spatial structure than the 
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homogeneous objects. 

 The objects covered by savannah’s vegetation in the wet season (Figures 

8a and c) are composed of homogeneous pixels (low internal NDVI variability) 

with low σ² values between 0.0004 and 0.0006. After LULC change, i.e. 

deforestation (Figure 8b), there was an increase in internal variability of NDVI 

values due to the presence of bare soil and/or pasture, evidenced by a higher σ² 

value (0.0040). When the area presented SC (Figure 8d), the semivariogram 

shape and σ² remained constant, with low σ² values, indicating that seasonal 

change did not affect the spatial variability of NDVI data.  

 

Figure 8. Semivariogram examples: (a) preserved savannah; (b) savannah 

undergoing a deforestation; (c) preserved savannah; (d) savannah undergoing the 

effects of forest phenology. Landsat TM image R4 G5 B3. 

 

 The analysis of the individuals features, indicates that the average NDVI 

values (spectral feature) within the objects decreases from the initial to second 

epoch both in the presence of LULC changes and SC (Figure 9a). In contrast, the 
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σ² parameter increased from the initial epoch (0.0004) to the second epoch 

(0.0046) in the presence of LULC changes and remained almost constant 

(approximately 0.0002, 0.0004) in the presence of SC (Figure 9b). 

 Analysis of the semivariogram indices that provide information near the 

origin, the RVF index (ratio variance first lag - indicates the relationship 

between spatial correlations at large and short distances) presented low values in 

both initial and second epochs (1.83 and 3.39) for SC objects. In the LULC 

change objects, it presented low values in the initial epoch (1.77) and relatively 

higher values in the second epoch (11.67), indicating that, the initial part of the 

semivariogram is strongly affected by LULC changes, and is not affect by SC 

(Figure 9c).  

 The RSF index (ratio second first lag - ratio between semivariance 

values at the second and first lags), also provide information near the origin. 

This index represents the proportion of the semivariogram value at the second 

lag to that at the first lag. It provides information about changes in data 

variability at short distances. The average RSF values for LULC change and SC 

objects were almost constant, (Figure 9d), indicating that this index is not 

affected by vegetation seasonality, however, this index is not useful in detecting 

LULC changes. RSF index is affected by the lag distance of the semivariogram. 

The lag size of 30 m (pixel size) was not sufficient to provide variations between 

the second and first lags and capture the landscape changes using this index. 

 Among the indices that provide information up to the first maxima, the 

MFM (mean first maximum), DMF (difference mean first lag), and AFM (area 

first lag – first maximum) presented the same trend (Figure 9e, f, g), with similar 

values for SC objects from the initial to the second epoch and increased average 

values in the presence of LULC changes. The MFM is an indicator of the 

average values between the first lag and the first maximum. The DMF index is 

the difference between the MFM and the semivariance at the first lag. This 
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parameter complements the information provided by the RVF index and showed 

similar results. The AFM index is the area between the semivariogram value at 

the first lag and the semivariogram function until the first maximum. It provides 

information about the curvature of the semivariogram and is also related to the 

variability of the data. For SC objects, the AFM is almost constant (0.0014 and 

0.0034). In the presence of LULC changes, the semivariogram area presented a 

significant increase from 0.0015 to 0.0396. 

 The semivariogram index RMM (ratio maximum mean) presented 

similar values from the first and second epochs in both classes (Figure 9h). This 

index is the ratio between the semivariance at the first local maxima and the 

mean semivariogram values up to this maximum. It could not efficiently 

discriminate changes from LULC changes, classifying SC as LULC changes. 
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Figure 9. First and second epochs average object values for LULC change and 

SC classes obtained by: (a) NDVI spectral data; (b) σ² parameter from 

semivariogram; (c) RVF semivariogram index; (d) RSF semivariogram index; 

(e) MFM semivariogram index; (f) DMF semivariogram index; (g) AFM 

semivariogram index; and (h) RMM index. 
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 As a result, the average NDVI (spectral feature) and RSF/RMM 

semivariogram indices were not able to capture the differences between LULC 

and SC classes. These features are sensitive to phenological variations, posing a 

challenge to OBCD using bitemporal images (Lu et al. 2016), probably resulting 

in false detection of LULC changes, without disregard the changes caused by 

vegetation phenology (SC). 

 The RVF, MFM, DMF, and AFM semivariogram indices have the 

potential to distinguish between homogeneous and heterogeneous objects. These 

indices are directly influenced by the σ² semivariogram parameter (overall 

variability), which is sensitive to LULC changes and is not affected by changes 

caused by vegetation seasonality (SC). 

 

3.2. Evaluation of change detection 

Table 2 summarizes the comparative results in terms of the producer's and user's 

accuracies, overall accuracy, and . The most of the geostatistical features 

exhibit their effectiveness in change detection analysis, with the highest overall 

accuracy value (95%),  (90%). We obtained the highest producer's and user's 

accuracies using the σ² semivariogram parameter. With regard to the SC class, 

all the objects in the map were correctly classified (user's accuracy = 100%) with 

an omission error of 9.09%. The most important point to note is that all LULC 

changed objects were correctly mapped (producer's accuracy = 100%) with an 

inclusion error of 10%. The SC class also present the best producer's accuracy, 

reaching 90.91%. 

 The AFM index also provided good results, with an overall accuracy of 

88.33%. Among the geostatistical features, RMM and RSF semivariogram 

indices provided the lower accuracies, with overall accuracy of 76.67% and 

81.67%, respectively. This was expected, due to the previous graphic analysis 

indicates these indices were not able to accurately discriminate between LULC 
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change classes and SC.  

Table 2. Change detection results based on confusion matrix.  

Feature Accuracy Seasonal change LULC change 

∆NDVI 

Overall accuracy (%) 66.67 

Kappa coefficient () 0.33 

Producer's accuracy (%) 60 100 

User's accuracy (%) 100 33 

Error (%) 6.55 

Confidence interval 60.12 < 66.67 < 73.22 

NDVI 

Overall accuracy (%) 78.33 

Kappa coefficient () 0.57 

Producer's accuracy (%) 77.42 79.31 

User's accuracy (%) 80 76.67 

Error (%) 5.72 

Confidence interval 72.6 < 78.33 < 84.05 

Sill 

Overall accuracy (%) 95 

Kappa coefficient () 0.9 

Producer's accuracy (%) 90.91 100 

User's accuracy (%) 100 90 

Error (%) 3.03 

Confidence interval 91.97 < 95 < 98.02 

RVF 

Overall accuracy (%) 85 

Kappa coefficient () 0.7 

Producer's accuracy (%) 78.38 95.65 

User's accuracy (%) 96.67 73.33 

Error (%) 4.96 

Confidence interval 80.03 < 85 < 89.96 

RSF 

Overall accuracy (%) 81.67 

Kappa coefficient () 0.63 

Producer's accuracy (%) 74.36 95.24 

User's accuracy (%) 96.67 66.67 

Error (%) 5.38 
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Confidence interval 76.29 < 81.67 < 87.04 

MFM 

Overall accuracy (%) 85 

Kappa coefficient () 0.7 

Producer's accuracy (%) 76.92 100 

User's accuracy (%) 100 70 

Error (%) 4.96 

Confidence interval 80.03 < 85 < 89.96 

DMF 

Overall accuracy (%) 85 

Kappa coefficient () 0.7 

Producer's accuracy (%) 76.92 100 

User's accuracy (%) 100 70 

Error (%) 4.96 

Confidence interval 80.03 < 85 < 89.96 

RMM 

Overall accuracy (%) 76.67 

Kappa coefficient () 0.53 

Producer's accuracy (%) 73.53 80.77 

User's accuracy (%) 83.33 70 

Error (%) 5.88 

Confidence interval 70.79 < 76.67 < 82.54 

AFM 

Overall accuracy (%) 88.33 

Kappa coefficient () 0.76 

Producer's accuracy (%) 81.08 100 

User's accuracy (%) 100 76.67 

Error (%) 4.46 

Confidence interval 83.86 < 88.33 < 92.79 

 

 The σ² semivariogram parameter quantifies the variation explained by 

the spatial structure. An increase in this value over time indicates that the initial 

image is more homogeneous than the final image. A σ² semivariogram 

parameter that remains constant with time indicates that the variability between 

the two images remained constant. Similar results have been reported by other 

scholars.  
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 Sertel, Kaya, and Curran (2007) investigated the relationship between 

semivariogram metrics and the degree of earthquake damage using satellite pour 

l'observation de la terre – SPOT HRVIR (high-resolution visible & infrared) 

imagery. They found that semivariogram shapes for pre- and post-earthquake 

samples differed if there was damage but were similar if the area was not 

damaged severely. Acerbi Júnior et al. (2015) used the semivariogram derived 

from NDVI images to detect changes in the Brazilian savannah and found that 

the values of the range and σ² metrics increased after deforestation, but remained 

similar if the land cover had not been changed.  

 Classification employing average NDVI values produced relatively low 

accuracies (overall accuracy of 78.33%), and presented values superior only to 

the RMM semivariogram index (overall accuracy of 76.67%) and the image 

differencing traditional change detection (overall accuracy of 66.67%). The 

variations in the NDVI values for LULC change and SC classes during the 

analysed period were very similar, and these small differences contributed to the 

poor results reported here. The image differencing change detection provided the 

lowest overall accuracy, however, the user's accuracy of the SC class of 100%, 

as well the producer's accuracy of the land use/land cover change.  

 Most geostatistical features provided better results when compared with 

spectral NDVI data and the image differencing traditional change detection. 

Among the geostatistical features tested, six measures of spatial dependence 

reached an overall accuracy of more than 80% (Figure 10). 



144 

 

 

Figure 10. Features sorted by overall accuracy (bars) and kappa coefficient- 

(lines). 

 

 Geostatistical features have high accuracies in SVM classifications, 

indicating that these features are able to discriminate between (1) land use/land 

cover (LULC) change class, comprising deforestation and burned areas, and (2) 

seasonal changes (SC) class comprising the same cover in both epochs, but in 

different seasonal conditions. They provide information regarding the variability 

of the internal structure of objects that are not influenced by vegetation 

seasonality, thereby reducing confusion errors between the classes. 

 The change detection classes analysed were distinguished by the overall 

variability provided by the parameter of the semivariogram. The accuracies of 

the σ² parameter and AFM semivariogram indices were higher than those of the 

other indices, as they provide information that represented the overall variability 

of the NDVI, and the other indices provide information related to specific parts 

of the semivariogram.  

 The advantage of using geostatistical features (RVF, MFM, DMF, AFM 

and σ²), instead of using spectral features and/or traditional change detection 

methods, is that these features are insensitive to changes caused by vegetation 
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seasonality; therefore, they allow for the generation of accurate maps of 

deforestation/burned areas, without the need of use a dense time series to 

eliminate the effects of forest phenology. These indices not only are able to 

detect LULC changes, but also, do not detect SC as LULC changes. The change 

detection map produced using the geostatistical, spectral feature and image 

differencing is presented in Figure 11.  
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Figure 11. Deforestation map and the percentage area of LULC change and 

seasonal changes (SC) obtained by (a) average NDVI; (b) σ² semivariogram 

parameter; (c) RVF semivariogram index; (d) RSF semivariogram index; (e) 

MFM semivariogram index; (f) DMF semivariogram index; (g) AFM 

semivariogram index; (h) RMM semivariogram index and (i) Image differencing 

traditional change detection method. 

 

3.3. Limitations to the method and further studies 

 In this section, we present the two major limitations of the method used 

in this study: (i) the predefined criteria required to generate the semivariogram 

and (ii) the object size of the OBIA approach. We also (iii) recommend further 

studies to improve this methodology and its evaluation in other areas/vegetation 

types for comparison purposes. 

 (i) Predefined criteria: In OBIA, an important input to the segmentation 

algorithms is the scale parameter, which controls the output object size that 

directly influences the semivariogram lag distance. The lag distance should not 

be larger than the spatial extent of the object; a small distance fails to provide a 

complete description of textural features, and if the lag distance is too large then 

short-range autocorrelation may be masked. It is necessary to find an optimal lag 

distance that works well for both landscape objects and image spatial resolution. 

To obtain the lag distance, it is necessary to set the lag size and the number of 

lags. When samples are located on a sampling grid, the grid spacing is usually a 

good indicator of the lag size. As satellite images are continuous, the lag size is 

usually equivalent to the size of the image spatial resolution. Tests are required 

to estimate the appropriate number of lags. 

 (ii) Object size: An image object should be adequately sized to 

sufficiently represent its textural pattern, with the minimum number of necessary 

pixels to generate the semivariogram. The main limitation in using 
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semivariogram indices or semivariogram parameters in OBCD is the presence of 

long and narrow objects. The question remains, of how to deal with 

semivariogram extraction for some curiously shaped objects (Wu et al. 2015). 

 (iii) Further studies: The following issues are of interest for future 

research: (1) establishing the relationship between image segmentation 

parameters and image spatial resolution; (2) resolving the limitations associated 

with narrow and long objects in detecting changes using geostatistical features in 

the OBIA approaches; (3) identifying and assessing the types of changes (areas 

converted to bare soil, pasture, or burned areas) including the initial savannah 

physiognomies (i.e., the grassland, shrub, wooded, and woodland forms of 

savannah). 

 

4. Conclusions 

 We developed a method for remote sensing land use/land cover (LULC) 

change detection that uses the spatial context to eliminate the effects of forest 

phenology. The method applies an object-based approach using geostatistical 

features obtained from bitemporal NDVI images. 

 We conclude that the spatial variability of NDVI values, here 

represented by geostatistical features, are not affected by vegetation seasonality, 

and therefore, are able to accurately detect LULC changes, disregarding those 

associated with forest phenology, resulting in fewer classification errors. Using 

the most geostatistical features, the change detection results are considerably 

improved compared with the spectral features and image differencing technique. 

The highest accuracy was achieved by the sill (σ²) parameter and the AFM (area 

first lag – first maximum) index, which were not affected by vegetation 

seasonality because they represent the information provided by the entire 

semivariogram rather than specific parts of it. 

 The study findings indicate that using the geostatistical context it is 
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possible to use bitemporal NDVI images to address the challenge of accurately 

detecting LULC changes, eliminating the effects of forest phenology, without 

the need to use a dense time series of remote sensing images. 

 The method of extracting accurate semivariogram curves from objects 

of long and narrow shapes needs to be further studied, along with the 

relationship between the scale of segmentation and image spatial resolution, 

including the type of change and the initial land cover class. 
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Abstract:  The Brazilian Savannas and Semi-arid woodland biomes have been 

under increasing anthropic pressure for many years, and land-cover (LC) 

changes in these seasonal ecosystems have been largely neglected. Remote 

sensing provides useful tools to detect forest changes, but previous studies have 

not attempted to separate the effects of forest phenology and land-cover changes, 

as deforestation, logging and fires to improve the accuracy of change detection 

using bitemporal Landsat data. Here we developed an object-based remote 

sensing method that is able to disentangle the effects of forest phenology and 

land-cover changes by combining spectral and the spatial context using 

traditional spectral features (SF) and semivariogram indices (SI), exploring the 

full capability of NDVI (normalized difference vegetation index) Landsat 

images. We used random forest (RF), support vector machines (SVM) and 

artificial neural network (ANN) algorithms to train the input features. We found 

that the temporal spatial variability of NDVI values is not affect by vegetation 

seasonality and, therefore, the combination of spectral features and 

semivariogram indices provided the best global accuracy (~92.27%) to separate 

the seasonal changes and land-cover changes. This study underscore that the use 

of spatial features reduces the need of multi-temporal satellite images to 

accurately extract land-cover changes such as deforestation, logging or fire 

while disregarding the ones caused by phenological differences. 

 

Keywords: Geostatistics, Semivariogram, Change detection, Savannas, Semi-

arid woodland 
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1. Introduction 

 The Brazilian Savannas and Semi-arid woodland biomes, which 

together cover approximately 35% of the Brazilian territory, are placed among 

the most endangered ecoregions on Earth due to high rates of conversion and 

few protected areas (Hoekstra et al., 2005). The Brazilian Savannas (also known 

as Cerrado) have suffered heavy losses of natural vegetation due to agricultural 

expansion (Silva et al., 2006) and the Semi-arid woodland (Caatinga) has been 

indicated as one of the least known and most neglected of Brazilian biomes 

(Santos et al., 2011). Most of the efforts for estimating forest cover changes have 

been focused on the tropical rain forests, with far less attention dedicated to the 

less humid seasonal regions (Beuchle et al., 2015). Although projects and 

studies assessed land-cover (LC) changes in these biomes based on remote 

sensing images, the accuracy of these results is under question due to their large 

areas, highly dynamic and the influence of vegetation seasonality on change 

detection that poses a significant challenge in remote sensing approaches (Lu et 

al., 2016).  

 Estimating land-cover changes by remote sensing is not a trivial task, 

since satellite images contain a combination of natural forest phenology (driven 

by annual temperature and rainfall interactions impacting plant phenology), 

anthropogenic disturbances (i.e. deforestation, urbanization, floods, and fire), 

cloud cover, atmospheric scattering and geometric errors (Roy et al., 2002). The 

vast majority of change detection algorithms and techniques involve the 

comparison of images from just two dates (bitemporal) (Healey et al., 2005; 

Masek et al., 2008), interpreting natural phenological changes as land-cover 

changes (Verbesselt et al., 2010; Zhu et al., 2012). Thus, an important issue in 

remote sensing change detection is how to accurately extract land-cover changes 

such as deforestation, logging and fires while disregarding the ones caused by 

phenological differences (Chen et al., 2013; Jin et al., 2013). 
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 Verbesselt et al., (2010) developed a powerful change detection 

approach for time series by detecting and characterizing Breaks For Additive 

Seasonal and Trend (BFAST). Changes occurring in the trend component often 

indicate disturbances, while changes occurring in the seasonal component 

indicate phenological changes. The use of a seasonal model is based on an 

assumption that there is an identifiable seasonal pattern in the time series that 

can be described mathematically. However, this assumption may not always 

hold if the time series is for satellite images which are not acquired at regular 

interval, or have wide temporal gaps due to persistent cloud cover (Asner, 2001). 

Instead of using a seasonal model to account for seasonality in image time 

series, Hamunyela et al., (2016) used the spatial context, in a pixel-based 

approach. They concluded that the spatial context approach is useful for timely 

detection of deforestation events in areas where forests exhibit strong 

seasonality. However, the gain in the overall spatial accuracy was only 

marginally higher when using spatial context than when using a seasonal model.  

 Recently, Silveira et al., (2018) developed a method for remote-sensing 

change detection that is insensitive to changes caused by vegetation seasonality, 

using the spatial context and bitemporal images instead of time series. The study 

findings indicate that using the geostatistical context, it is possible to use 

bitemporal normalized difference vegetation index (NDVI) images to address 

the challenge of accurately detecting land-cover changes, eliminating the effects 

of forest phenology, resulting in fewer classification errors.  

 Motivated by the critical need of development of methods that can 

address the issue of seasonality using bitemporal images, without the need of use 

dense time series and seasonal models, we evaluated a method to disentangle the 

effects of forest phenology and land-cover changes using an object-based 

approach that combines spatial and spectral features using bitemporal NDVI 

images. We compared the performance of three machine learning algorithms 
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that represent new directions in change detection: artificial neural networks 

(ANN), random forests (RF), and support vector machines (SVM). Specifically, 

we address the following research question:  How well can we differentiate 

between seasonal and land-cover changes combining spatial and spectral 

features derived from NDVI Landsat images? 

 To address these research questions, we used a set of semivariogram 

indices (SI) calculated from semivariograms obtained from NDVI Landsat 

images as spatial features. The semivariogram indices were combined with 

spectral features (SF) to improve the accuracy of change detection. We 

performed the analysis at the object level, that reduces the small spurious 

changes (Hussain et al., 2013), and also allow the incorporation of spatial 

information (Blaschke, 2010). We used an area of seasonal Savanna and Semi-

arid woodland Brazilian biome that is undergoing rapid land-cover changes in 

the past years to test the efficacy of this method. 

 

2. Materials and Methods  

 We propose a new method based on object-based change detection 

(OBCD) that combines semivariogram indices and spectral features obtained 

from bitemporal NDVI Landsat images as input data to train machine learning 

algorithms, focusing on separate the effects of forest phenology from land-cover 

changes. The method is divided into six steps (Figure 1). 
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Figure 1. Workflow of the proposed method. 

 

2.1. Study Area and Data  

 Our study comprises Landsat path/row 219/71 in the north of the state of 

Minas Gerais (MG), Brazil (Figure 2). This region, which totals approximately 

31,742 km², exhibits a transition between Savanna and Semi-arid woodland 

biomes. The Savanna and Semi-arid woodland biomes are seasonal ecosystems 

characterized by distinct dry and wet seasons. They are located in the centre and 

the Northeast of Brazil, covering nearly 35% of the Brazilian territory. 
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Figure 2. (a) Minas Gerais state located in the southeast of Brazil; (b) Study 

area, covering Brazilian Savanna and Semi-arid woodland biomes; (c) Landsat 

8 OLI image of the study area. 

 

 The diversity of the vegetation types of these biomes (Figure 3) is well 

documented ranging from closed or open canopy deciduous and semi-deciduous 

forest, grassland to woodland cerrado (Ferreira et al., 2004; Arantes et al., 2016) 

and deciduous forests ranging from deciduous low shrub to small patches of tall 

dry forests (Santos et al., 2012). The climate is tropical with rain concentrated in 

October–May, while the dry season has close to zero rainfall in some months, 

with air humidity less than 20% in August and September, which characterizes 

the high seasonality in the region (Peel et al., 2006). The rainfall in Caatinga 

biome is extremely irregular, in both its temporal and geographical distribution; 
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usually more than 75% of the total annual rainfall occurs within three months. 

The annual variations are large; droughts can last for years (Leal et al., 2005). 

 

(a) (b) 
(c) 

(d) (e) (f) 

Figure 3. Landsat 8 OLI images (RGB colour composite, 543) of the vegetation 

types of the study area: (a) Cerrado grassland (open grassland); (b) Shrub 

cerrado (open grassland with sparse shrubs); (c). Cerrado woodland (mixed 

grassland, shrublands, and trees up to seven meters in height); (d) Palm swamps 

(riparian vegetation); (e) Semideciduous forest (semideciduous canopy foliage); 

(f) Deciduous forest (predominance of deciduous individuals whose loss of 

foliage reaches more than 50%). 

 

 We used two Landsat images (8 OLI – Operational Land Imager from 

2015/06/19 and 2016/10/27) from the United States Geological Survey (USGS). 
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The acquired images were geometrically and atmospherically (surface 

reflectance) corrected by USGS (high level product). We selected the images not 

only avoiding presence of clouds, but also selecting images around dry and wet 

months to maximize the effects of vegetation seasonality. We used the 

normalized difference vegetation index (NDVI) (Tucker, 1979) of each period. 

Although NDVI is a simple remote sensing index, it minimizes the effect of 

shadows caused by the terrain’s topography (Vorovencii, 2014). 

 

2.2. Image Segmentation 

 We used object-based image analysis (OBIA) because, in general, it 

provides better results of image classifications than traditional pixel by pixel 

methods (Tewkesbury et al., 2015). OBIA makes use not only of the spectral 

information, but also the spatial features of remote sensing objects (Balaguer et 

al., 2010; Balaguer-Beser et al., 2013; Yue et al., 2013; Powers et al., 2015; Wu 

et al., 2015; Gil-Yepes et al., 2016; Silveira et al., 2017). 

 For each NDVI Landsat image we applied an automatic segmentation 

(Addink et al., 2012) using the eCognition software for object-based image 

analysis. The multiresolution segmentation algorithm (Baatz and Shaped, 2000) 

was set with three parameters: shape, compactness, and scale. These parameters 

control the shape, size, and spectral variation of segmented image objects. The 

shape parameter was set to 0.1 and compactness was set to 0.5. The most critical 

step is the selection of the scale parameter, which controls the size of the image 

objects. The scale parameter sets a homogeneity threshold that determines the 

number of neighbouring pixels that can be merged together to form an image 

object (Benz et al., 2004) and directly influences the size of the objects 

connected to the semivariogram predefined criteria (lag distance) and also the 

minimum number of pixels inside each object necessary to generate the 

semivariogram. We used a trial and error approach (Duro et al., 2012) to find the 
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appropriate scale parameter (Chen et al., 2015) to guarantee a minimum number 

of samples (25 pixels) inside the objects.  

 The main limitation of using semivariogram features in OBCD is the 

presence of long and narrow objects as well as small objects without the 

minimum number of pixels necessary to generate the semivariogram. To 

minimize this issue, the multiresolution segmentation was conducted based on 

the initial Landsat 8 OLI image (Year 1). We extracted the NDVI values within 

the objects to obtain the SI and SF used here as input data for the change 

detection analysis.  

 

 2.3. Class Definition 

 This study focused in two classes: (i) no-change: landscape vegetation 

cover that had the same land-cover in both time, encompassing seasonal 

variations due vegetation phenology (Figure 4ab); (ii) land-cover changes: 

landscape vegetation cover under deforestation, logging or fires. The land-cover 

changes samples comprised small changes reaching up to 50% of the objects 

(Figure 4cd) and big changes ranging from 50 to 100% of the objects (Figure 

4ef). The classes were defined according to a prior visual interpretation and 

sampled using a stratified random design. 
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(a) 

 
(b) 

 
(c)  

(d) 

 
(e) 

 
(f) 

Figure 4. Landsat images 8 OLI (RGB 543 composite) illustrating the LULC 

classes: (a) Wet deciduous forest in 2015; (b) Dry deciduous forest in 2016; (c) 

Wet cerrado woodland in 2015; (d) Dry cerrado woodland with 25% of loss 

caused by deforestation in 2016; (e) Grassland cerrado in 2015 and (f) Grassland 

cerrado in 2016 with 75% of loss caused by fire 2016. 

 

2.4. Spatial Features 

 We used as spatial features the information provided by semivariogram 

derived from NDVI images (Atkinson and Lewis, 2000). The experimental 

semivariogram (1) is given by: 

 

γ(h)=
1

2N(h)
∑[Z(x) -Z(x+h)]2

N(h)

i=1

 (1) 
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 Where γ(h) is the estimator of the semivariance for each distance h, N(h) 

is the number of pairs of points separated by distance h, Z(x) is the value of the 

regionalized variable at point x, and Z(x+h) is the value at point (x+h). 

 The semivariogram is given by plotting the spatial variance against the 

distance h, and enables the variance among different combinations of pairs of 

points to be estimated. The semivariance functions are characterized by three 

parameters: sill (σ²), range (φ), and nugget effect (τ²). The sill is the plateau 

reached by the semivariance values, and measures the quantity of variation 

explained by the spatial structure of the data. The range is the distance until the 

semivariogram reaches the sill, reflecting the distance at which the data become 

correlated. The nugget effect is the combination of sampling errors and 

variations in scale that occurs over scales of less than the distance between the 

sampled points (Curran, 1988). 

 To verify how the temporal spatial variability of NDVI values within 

objects are affected by vegetation seasonality, we compared the semivariance 

sill (σ²) of each individual object in both years. We attempted to find an optimal 

lag distance to ensure that sill values would provide a concise description of data 

variability. We fixed the number of lags as 30 pixels and the lag size equivalent 

to image spatial resolution (30 m), resulting in a lag distance of 900 m. We then 

analysed the shape and overall variability of the semivariograms.  

 The information generated by semivariogram can be achieved by: (i) 

Modelling the semivariogram by fitting a model to extract the parameters 

(Acerbi Junior et al., 2015; Silveira et al., 2018); (ii) By using raw 

semivariograms at various lag and window sizes (Berberoğlu et al., 2010) and 

(iii) By using indices calculated from the semivariograms (Balaguer et al., 

2010). Fitting a model to extract semivariogram parameters require the selection 

of a proper function (Wu et al., 2015), raw semivariograms values and windows 

sizes makes necessary to find an appropriate window size and to considerer the 



171 

 

border effects. The semivariogram indices synthetize the most relevant 

information about the shape of the semivariogram and enhance the information 

contained on the first lags, where spatial correlation at short distances is higher. 

In addition, fitting a model is unnecessary, which improves the processing time 

and reduces the errors generated by choosing an incorrect model.  

 Thus, to verify how well can we differentiate between seasonal and 

land-use changes combining geostatistical and spectral features derived from 

NDVI Landsat images, we used eight semivariogram indices (Balaguer et al., 

2010) available in the software FETEX 2.0 (Ruiz et al., 2011) (Table 1). These 

indices describe the shape of the experimental semivariograms, and therefore the 

properties that characterize the spatial patterns of the image objects, thus 

providing textural information that may be used for change detection analysis 

(Table 1).  
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Table 1. Semivariogram indices used in this research. 

Index Description Formula 

RVF* Ratio between the values 

of the total variance and 

the semivariance at first 

lag 

RVF=
Variance

γ1
 

RSF* Ratio between 

semivariance values at 

second and first lag 

RSF=
γ2

γ1
 

FDO* First derivative near the 

origin 
FDO=

γ2- γ1

h
 

SDT* Second derivative at third 

lag 
SDT=

γ4- 2γ3+ γ2 

h
2

 

MFM** Mean of the 

semivariogram values up 

to the first maximum 

MFM=
1

Max_1
∑γi 

DMF** Difference between the 

mean of the semivariogram 

values up to the first 

maximum (MFM) and the 

semivariance at first lag 

DMF=MFM- γi 

RMM** Ratio between the 

semivariance at first local 

maximum and the mean 

semivariogram values up 

to this maximum 

RMM=
γ

max_1

γ
max_1
mean

 

AFM** Semivariance curvature 
AFM=

h

2
(γ1+2 ( ∑ γ1

max_1-1

i=2

) +γ
max_1

) - (γ1(hmax_1-h1)) 

* Near the origin; **Up to the first maximum. 

 

2.5. Spectral Features 

 As spectral features, we considered the minimum (MIN), mean 

(MEAN), maximum (MAX), and standard deviation (STDEV) of NDVI values 

inside each object. This allows the performance of spatial and spectral features 

to be compared and combined. 
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2.6. Change Detection Algorithms 

 We chose three different machine learning algorithms to classify the 

changes. We compared the performance of an artificial neural network (ANN), 

support vector machine (SVM), and a random forest (RF). The samples were 

divided into two parts, one for classifier training and the other for classification 

assessment. Half of the samples were chosen at random for training, with the 

remaining 50% used as evaluation samples.  

 

2.6.1. Artificial Neural Network (ANN) 

 We used an ANN algorithm as they are nonparametric and make no 

assumptions about data distribution and independency. They adaptively estimate 

continuous functions from data without specifying mathematically how outputs 

depend on inputs (Im and Jensen, 2005). ANN algorithms learn from the 

training dataset and build relationships (networks) between input (features) and 

output nodes (changes) (Hussain et al., 2013). The trained network then is 

applied to the test dataset (Gopal and Woodcock, 1996). There are many 

different types of ANN, and one that is widely used in remote sensing 

applications is the multilayer perceptron (MLP) (Benediktsson et al., 1990). This 

type of model consists of three or more interconnected layers. The first layer, 

termed the input layer, serves as a distribution structure for the data being 

presented to the network. The final processing layer is called the output layer, 

and the layers between the input and output layers are termed hidden layers 

(Berberoglu et al., 2000).  

 We used the ANN obtained by running the Multilayer Perceptron 

function (of the multilayer perceptron type) provided by WEKA 3.8 software. 

The training of neural networks occurred through the back-propagation 

algorithm, which fit the weights of all the layers of the network from the back-

propagation of the error, obtained in the output layer. The updating of weights 
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was carried out according to the error, learning rate, and momentum terms 

(Delta rule).  

2.6.1. Support Vector Machine (SVM) 

 The SVM algorithm is extended to nonlinearly separable classes by 

mapping the samples to a higher-dimensional feature space using a kernel 

function (Kulkarni and Lowe, 2016). We used the radial basis function (RBF) 

kernel, as this is known to be effective and accurate. To train the SVM classifier, 

an error parameter C and a kernel parameter γ were set. SVMs are particularly 

useful for remote sensing because they have the ability to handle small training 

datasets, often producing higher classification accuracy than traditional methods 

(Mantero et al., 2005). The algorithm was implemented in the WEKA 3.8 

software under the Sequential Minimal Optimization function. The values of C 

and σ (the bandwidth or influence range of each training point in the RBF) were 

tested within intervals of 10i (i = –3, …, 3), and the least-squares mean error 

configuration was chosen for the application.  

2.6.2. Random Forest (RF) 

 The RF algorithm, initially proposed by (Breiman, 2001) is an ensemble 

method which generates a set of individually trained decision trees and 

combines their results. RF is a robust non-parametric classifier and has the 

ability to accommodate many predictor variables (Devries et al., 2016). The 

advantages of RFs include excellent accuracy, efficient implementation on large 

datasets, and a structure that enables the future use of pre-generated trees 

(Breiman, 2001). 

 We used the open-source software WEKA 3.8 to fit the RF. Two 

parameters need to be set in order to produce the forest trees: the number of 

decision trees to be generated (Ntree) and the number of variables to be selected 

and tested for the best split when growing the trees (Mtry) (Belgiu and Drăgu, 

2016). Five hundred trees were grown for each classification (Millard and 
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Richardson, 2015). The Ntree required to maintain a certain level of accuracy 

has been assessed by several authors, and the minimum number of trees for 

optimal classification appears to be between 100 (Lawrence et al., 2006) and 300 

(Akar and Güngör, 2015), with the majority of studies setting the Ntree value to 

500 because the errors stabilize before this number of classification trees is 

achieved (Lawrence et al., 2006). Since the RF classifier is computationally 

efficient and does not over fit, Ntree can be arbitrarily large (Guan et al., 2013). 

Since theoretical and empirical research has highlighted that classification 

accuracy is less sensitive to Ntree than to the Mtry parameter (Guan et al., 

2013), the number of features was left at its default value (log of the number of 

features + 1) (Millard and Richardson, 2015).   

 

2.7. Change Detection Evaluation 

 We tested (i) semivariogram indices; (ii) spectral features; and (iii) their 

combination. Change detection performance was evaluated using a confusion 

matrix (Congalton, 1991). From this, we measured the overall accuracy, 

producer’s and user’s accuracy and the kappa coefficient.  

 

3. Results  

3.1. Semivariogram Analysis 

 We analysed the temporal spatial variability of NDVI data comparing 

the semivariogram shape and parameters. The semivariograms reached the sill 

within the calculated distance (900m), indicating that their spatial extents were 

sufficiently large to encompass the entire spatial variability. From several 

remote sensing object of no-change class (landscape vegetation cover that had 

the same land-cover classes in both time, encompassing seasonal variations due 

to vegetation phenology), the semivariogram generated using NDVI images of 

2015 had similar behaviour to the semivariogram of NDVI 2016 (Figure 5a and 
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5b). On the other hand, the semivariogram representing objects of land-cover 

change class (i.e deforestation, logging or fires) increased considerably from 

2015 to 2016 (Figure 5c and 5d). 

 The low variability of NDVI values of the landscape types covering the 

study area (physiognomies of Savanna and Semi-arid woodland biomes) in 2015 

is explained by the high and homogeneous values of this index inside the 

objects.  In 2016 the land-cover did not change, however the NDVI values 

decreased due to the effect of vegetation seasonality. Nevertheless, the NDVI 

variability did not change (overall variability ~0.0005) because the phenology 

affected the whole object. The values decreased from 2015 to 2016, but its 

variability did not. 

 In the presence of land-cover changes, the high variability of the objects 

is explained by the mix of bare soil/burnt areas and vegetation. The increase in 

overall variability (~ 0.0030) after change is explained by the combination of 

high NDVI values for the remaining vegetation inside the objects and low NDVI 

values for bare soil/burnt areas. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. Semivariogram examples of NDVI values extracted from objects 

covering by: (a) Wet physiognomy in 2015; (b) Dry physiognomy in 2016; 

(c) Wet physiognomy in 2015; (d) Dry physiognomy in 2016 affected by 

deforestation. 

  

 These results indicate a very clear trend where by the overall variability 

and shape, the semivariogram between 2015 and 2016 were different when land-

cover changes (i.e. deforestation) occurred, and were similar when the area had 

not undergone any land-cover change. These results demonstrate that the shape 

of semivariograms derived from NDVI images, is not affected by phenological 

changes, while also being capable of detecting land-cover changes.  
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3.2. Change Detection Evaluation 

 The comparative results in terms of overall, producer’s and user’s 

accuracies, along with the kappa index for each group of features and machine 

learning algorithms indicated that features are effectives in differentiating no-

change and land-cover changes, with overall accuracies greater than 80% (Table 

2). We obtained the highest overall accuracy (92.27%) and kappa index (0.84) 

through the combination of semivariogram indices and spectral features using 

the support vector machine algorithm. The combination of semivariogram and 

spectral features reduced the overall confusion between classes and produced the 

best accuracy results with the MPL, SVM and RF algorithms, with accuracy 

greater than 90.82%, 92.27% and 91.30%, respectively.  

 The highest accuracies considering all the features groups and machine 

learning algorithms were obtained for the no-change user’s accuracy. This 

means that this class presented a low inclusion error, reaching 95.33% using the 

combination of the features and SVM. This is very significant, because it means 

that objects with phenological changes are not being classified as land-cover 

changes. 
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Table 2. Change detection results using the group of features and machine 

learning algorithms.  

ML Class 

SF SI SF + SI 

PA 

(%) 
UA (%) PA (%) UA (%) PA (%) UA (%) 

MPL 

Change 88.24 75.00 87.21 75.00 93.55 87.00 

No-change 79.51 90.65 79.34 89.72 88.60 94.39 

Global 

accuracy 
83.09 82.6 90.82 

Kappa index 0.65 0.65 0.81 

SVM 

Change 88.76 79.00 94.05 79.00 94.68 90.00 

No-change 82.20 90.65 82.93 95.33 90.27 95.33 

Global 

accuracy 
85.02 87.43 92.27 

Kappa index 0.69 0.74 0.84 

RF 

Change 84.54 82.00 87.37 83.00 91.84 90.00 

No-change 83.64 85.98 84.82 88.79 90.83 92.52 

Global 

accuracy 
84.05 85.99 91.3 

Kappa index 0.68 0.71 0.82 

* PA=producer accuracy; UA=user accuracy; SF=spectral features; 

SI=semivariogram indices; MPL=multilayer perceptron; SVM=support vector 

machine; RF=random forest. 

  

 Using spatial features, here represented by semivariogram indices, the 

change detection analysis was improved. These indices synthesized the most 

relevant information from semivariogram enabling us to extract the spatial 

information contained in the remote sensing objects, thus enhancing the NDVI 

spatial variability.  

 In summary, the semivariogram indices combined with the spectral 
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features provided improved change detection results, disentangling seasonal 

changes and land-cover changes, which are easily confused using only spectral 

features. The SVM algorithm was the most effective method to classify changes 

in areas of Savanna and Semi-arid woodland biomes under strong degradation 

processes.  

 

4. Discussion 

 We propose a new method of object-based change detection to 

disentangle the effects of forest phenology and land-cover changes in Brazilian 

seasonal biomes combining spatial and spectral remote sensing features. We 

achieved the spatial information by extracting the spatial variability of NDVI 

provided by semivariogram indices.  

 We found that areas with land-cover changes such as deforestation, 

logging or fires provide a singular semivariogram, with higher values of sill 

parameter than the ones generated from natural physiognomies of Savanna and 

Semi-arid woodland. Similar results were found by Acerbi Junior et al., (2015) 

and Silveira et al., (2018) studying change detection in Brazilian Savanas using 

semivariograms derived from NDVI images. Their results showed a very clear 

trend where the shape of semivariograms, and the overall variability were 

different when deforestation occurred and were similar when the area had not 

been changed. Sertel et al., (2007) used semivariograms to identify earthquake 

damage and found that semivariance values of post-earthquake data were higher 

than semivariance values of pre-earthquake data if the area had been affected 

severely.  

 These differences of NDVI spatial variability between landscapes are 

mainly explained by the type of landscape. Objects that comprise more than one 

type of landscape are the most heterogeneous (Garrigues et al., 2006). Their 

spatial variability is explained by the differences of NDVI values, due the 
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mosaic of types of landscape with low NDVI and high NDVI increases the 

spatial variability. Natural vegetation and forest sites are homogeneous; the 

vegetation cover, with NDVI around 0.7 (Garrigues et al., 2006) which includes 

the green understory, the high density of trees, or the presence of broadleaves, 

homogenizes the distribution of NDVI values. In the presence of forest 

phenology effects, the NDVI values decrease, reaching about 0.3. In this 

condition of seasonality changes, the spatial distribution of NDVI values 

remains almost constant, indicating that the temporal spatial variability of NDVI 

values is not affected by vegetation seasonality. On the contrary, the spectral 

information of NDVI data are sensitivity to phenological effects, decreasing 

their values from around 0.7 to 0.3. 

 Thus, combining spatial and spectral remote sensing features increases 

the accuracy of change detection algorithms, mainly the support vector 

machines. As a group of theoretically superior machine learning algorithms, it 

has been frequently cited in image classification and achieved empirical 

successes (Foody and Mathur, 2004). They appear to be especially advantageous 

in the presence of heterogeneous classes for which only a few training samples 

are available (Huang et al., 2002; Wu et al., 2015).  

 How to accurately extract land-cover changes while disregarding the 

ones caused by phenological differences in Brazilian seasonal biomes 

undergoing rapid land-changes can be achieved by adding semivariogram 

indices as input data to train machine learning algorithms. 

 

5. Conclusions 

 We have developed a method to separate the effects of forest phenology 

from land-cover changes using an object-based approach and Landsat images. 

Our method was based on traditional spectral NDVI data and spatial features 

provided by semivariogram as input data to train machine learning algorithms.  
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 This study demonstrated that the temporal spatial variability of NDVI 

values is not affect by vegetation seasonality inducing the addition of 

semivariogram indices to improve the change detection results. The combination 

of spectral features and semivariogram indices provided the best results to 

disentangle the effects of forest phenology and land-cover changes in Brazilian 

seasonal biomes of Savana and Semi-arid woodland. 

 Moreover, our study underscore that the use of spatial features reduces 

the need of multi-temporal satellite images to accurately extract land-cover 

changes such as deforestation, logging or fire while disregarding the ones caused 

by seasonality changes. 
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Abstract: In forest areas that experience strong seasonality and are undergoing rapid 

land-cover conversion (i.e., Brazilian savannas), the accuracy of remote sensing change 

detection is affected by seasonal changes that are erroneously classified as having 

changed. To improve the quality and consistency of regionally important forest change 

maps, we aim to separate process related to spectral variability due to phenology from 

changes related to deforestation or fire. A seasonal model is typically used to account 

for seasonality, but fitting a model is difficult when there are not enough data in the 

time series. In this research, we combine remote sensing and the spatial context at the 

object level to evaluate the performance of geostatistical features to reduce the impact 

of seasonality from NDVI (Normalized Difference Vegetation Index) Landsat time 

series, using both spectral and spatial information. The study area is the São Romão 

municipality, totalizing 2,440 km², part of a Brazilian savannas biome. We first create 

image objects by multiresolution segmentation, basing the objects on the characteristics 

found in the first image of the time series. We overlapped the objects with the 

remaining NDVI images in order to extract semivariogram indices, the RVF (Ratio 

Variance - First lag) and AFM (Area First lag - First Maximum) and spectral 

information (average and standard deviation of NDVI values) to generate time series 

from these features and derive spatio-temporal metrics (change and trend) to train a 

Random Forest (RF) algorithm. The NDVI spatial variability, captured by AFM 

semivariogram index time series produced the best result, reaching 96.53% of overall 

accuracy (OA) to separate no-change from forest change, while the greatest inter-class 

confusion occurred using the average of NDVI values time series (OA=63.72%). The 

spatial context approach we presented is a novel and useful object-based remote 

sensing method for the detection of forest change events in seasonal areas, eliminating 

the effects of forest phenology, without the need of use de-seasoning models. 

 

Keywords: remote sensing; geostatistical; semivariogram; change detection; 

NDVI; forest phenology; savannas 
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1. Introduction 

 

 Savannas are the dominant biome in South Hemisphere, covering 

approximately 45% of the area of South America [1]. In Brazil, this biome 

consists of a mosaic of land cover types, undergoing a strong seasonality in 

climate, accompanied with a widespread occurrence of fires that imposes 

environmental pressures with the most rapid land conversion in Brazil, 

exceeding that of the tropical forests [2]. The high rates of deforestation and few 

formally protected areas, the savanna biome is among the most endangered 

ecoregions on Earth [3]. Accurate mapping and monitoring of areas undergoing 

conversion are needed to indicate the priority areas of conservation and to 

inform sustainable land-use management, as well as to improve the 

understanding of the dynamics and related impacts on carbon balance, nutrient 

cycling, and water resources [1]. At present, much of the effort estimating forest 

changes in Brazil have been focused on the tropical rain forests with far less 

attention dedicated to the less humid seasonal regions [4]. 

 Remotely sensed data have been widely recognized as essential data 

sources for comprehensive mapping and quantification of land-cover changes 

[5-11]. Studies have used the NDVI (Normalized Difference Vegetation Index) 

time series acquired by moderate resolution sensors (i.e. MODIS) for land-cover 

change detection because of their frequent revisit time [12-14]. However, images 

from medium spatial resolution sources such as Landsat offer more detailed 

spatial information, providing insights at smaller scales over a long period of 

time. Initiated in 1972, Landsat is the longest running cross-calibrated globally 

consistent record of the Earth’s surface at medium resolution [10]. The ability to 

utilize the dense time series of imagery from Landsat have been demonstrated 

for mapping land-cover changes, such as deforestation, forest degradation, and 

impacts of fire [15-19]. 
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 However, estimating forest change by remote sensing is not a trivial 

task. Satellite images can contain a combination of natural forest phenology, 

cloud cover, atmospheric scattering, and geometric errors [20], impairing the 

precision of change estimates, especially in areas that exhibit strong seasonality 

in photosynthetic activity [9]. When images from different seasons are acquired, 

changes caused by phenological differences are present, and can result in 

mapping of a change in condition, rather than a change in land cover or land use 

[21]. To reduce the seasonal variations captured by remotely sensed images, 

techniques for de-seasoning time series have been used [22] on the assumption 

that seasonal patterns can be identified and removed [12,14,21,23,24]. However, 

this assumption may not always hold if the time series is for satellite images 

which are not acquired at regular interval or have gaps due to presence of clouds 

[9]. To minimize the impacts of seasonality, methods combining different 

satellites [25,26] and others that explore the spatial context [9] have been 

developed. 

 Previous studies have shown that pixel-based change detection can 

suffer from not including additional information regarding spatial context [27]. 

Inclusion of spatial information can reduce the small or spurious changes [28] 

and also allow for the incorporation of supplemental spatial information, such as 

geostatistical features [29-31]. Although pixel-based approaches also generate 

spatial information, the neighbourhood used to retrieve the information is often 

defined by a square window, that are easy to implement, however, they are 

computational expensive [22], biased along their diagonals and can straddle the 

boundary between two landscape features, especially when a large window size 

is used [32]. 

 Here, we propose a new approach to reduce the impacts of the seasonal 

changes introduced by forest phenology on forest change detection using the 

spatial variability of Landsat NDVI time series at the object level. We 
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hypothesize that semivariogram indices are not affected by vegetation 

seasonality as the NDVI variability captured by these indices remains constant 

in the presence of seasonal changes and substantially increases in the presence of 

land-cover changes. Thus, we investigated if the geostatistical features can be 

used to eliminate seasonal variations in satellite image time series and improve 

the change detection results. We used an object-based approach associated to a 

set of spatio-temporal metrics by computing geostatistical features, specifically 

the semivariogram indices developed by [29]. We also compared the change 

detection results to those provided by traditional spectral features (average and 

standard deviation of NDVI values). Implementation of this approach enables us 

to enrich object-based remote sensing methods, using the spatial information 

provided by semivariograms, that capture the spatial variability of images which 

are directly related to land-cover changes, improving the change detection 

classification performance in highly seasonal and ecologically important 

environments. 

 

2. Study Area 

The study area is the São Romão municipality, state of Minas Gerais (MG), 

Brazil, (Figure 1). Totalizing 2,440 km², approximately 84% of this area is 

covered by land cover classes of Brazilian savannas biome. The vegetation 

diversity of this biome is well documented (Table 1), ranging from grassland, 

shrublands to woodlands and palm swamps [33,34]. The climate is typically 

tropical (Aw) with rains concentrated in the October–May period, which 

characterizes the high seasonality in the region [35]. 
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Figure 1. Location of MG state in Brazil, and São Romão inserted in 

Brazilian savannas biome. Landsat TM (Thematic Mapper) composite: 

Red-NIR (Near Infrared), Green-SWIR 1 (Shortwave Infrared) and 

Blue-Red. 
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Table 1. Examples of the savannas land-cover classes found in the 

study area. Landsat TM images Red-NIR, Green-SWIR 1 and Blue-

Red composite. 

Land-cover 

classes 

Description Field view Landsat TM images 

Grasslands Open 

grassland 

  
Shrublands Open 

grassland 

with sparse 

shrubs 

  
Woodlands Mixed 

grassland, 

shrubland, 

and trees up 

to seven 

meters 
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Palm 

swamps 

Riparian 

type of 

vegetation 

  
 

3. Methodology 

We introduce a method for object-based change detection using 

geostatistical features to derive spatio-temporal metrics from time series, 

eliminating the effect of forest phenology. The method is divided into three main 

steps (Figure 2). 
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Figure 2. Methodology flowchart detailing the tree main steps to 

detect land-cover changes over the savanna biome: 1. Feature 

extraction from time series using NDVI trends at the object level; 2. 

Change detection using random forest to model change type as a 

function of spatio-temporal metrics and; 3. Evaluation of change 

detection using accuracy measures. 

We choose as change target the Brazilian savannas land-cover classes, and 

the change agents (Figure 3): 

 No-change: seasonal changes due phenological effects (natural events) 

 Forest change: land-cover changes such as deforestation (human induced) 

and fires (both natural events and human induces) 
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Figure 3. Landsat TM Red-NIR, Green-SWIR 1 and Blue-Red 

composite. Examples of no-change class: (a) savannas affected by 

phenological effects; and forest change classes: (b) savannas 

undergoing a change by fire and (c) savannas undergoing a change by 

deforestation. 

3.1. Satellite Data and Processing 

We downloaded all available cloud free Landsat TM and OLI images 

between 2003 to 2016 (total of 66 images) from the free and open access USGS 

Earth Resources Observation and Science (EROS) Centre archive. The data as 

downloaded is already processed to surface reflectance using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) and L8SR 

algorithm, respectively. Clouds and cloud shadows have been masked with the 

CFmask function [36]. 
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We used the NDVI vegetation index [37] for further analysis. The 

advantages of using indices rather than the original spectral bands observations 

include: minimizing soil and other background effects, reducing data 

dimensionality, providing a degree of standardization for comparison, and 

enhancing the vegetation signal [38].   

 

3.2. Object-based Image Analysis 

Image segmentation is the division of the satellite image into group of 

pixels spatially continuous and spectrally homogeneous, minimizing the within-

object variability compared to the between-object variability [39]. We used the 

multiresolution segmentation algorithm [40] implemented in the eCognition 

software, that produces highly homogeneous image objects based on spatial and 

spectral homogeneity criteria. Three different choices are typically considered 

when defining the analysis unit (image objects) for multitemporal object-based 

image analysis [41]: (i) image-object overlay: image-objects are generated by 

segmenting one of the images in the time series. A comparison against other 

images is then made by simple overlay; (ii) image-object comparison: image-

objects are generated by segmenting each image in the time series 

independently; and (iii) multitemporal image-object: image-objects are 

generated by segmenting the entire time series together. Our study focused on 

the image-object overlay approach, as expected to capture the intra-object 

heterogeneity well. 

Three key segmentation parameters (shape, compactness, and scale) control 

the size, shape, and spectral variation of segmented image objects [42]. We set 

the shape and compactness parameter to 0.1 and 0.5, respectively. The scale 

parameter controls the size of the image objects and sets a homogeneity 

threshold that determines the number of neighbouring pixels that can be merged 

together to form an image object [43]. The scale of segmentation directly 
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influences the size of the objects connected to the semivariogram predefined 

criteria (lag distance) and the minimum number of pixels inside each object 

necessary to generate the semivariogram, which makes this segmentation 

parameter crucial at this point. Based upon starting values found in the literature 

[39], we then used a “trial-and-error” approach [44] to find the appropriate scale 

parameter [45] that was set to 150 [31]. The image segmentation outputs were 

assessed once the objects produced to confirm a visual correspondence to 

meaningful objects (from a forest ecosystem perspective). The segmentation 

parameters were also defined to generate sufficiently small objects to not be 

spatially or spectrally confused, yet large enough to allow for calculation of the 

semivariogram and related geostatistical features. 

 

3.3. Geostatistical and Spectral Features 

We used as geostatistical features, two semivariogram indices (Table 2) 

developed by [29]. Inside each object, we extracted the NDVI values to generate 

the experimental semivariogram and calculate the semivariogram indices. The 

experimental semivariogram is defined as half of the average squared difference 

between values separated by a given lag, where this lag is a vector in both, 

distance and directions [46]. It was estimated using Equation 1: 

γ(h)=
1

2N(h)
∑ [Z(x)-Z(x+h)]2N(h)

i=1 , (1) 

Where γ (h) is the estimator of the semivariance for each distance h, N(h) is 

the number of pairs of points separated by the distance h, Z(x) is the value of the 

regionalized variable in the point x and Z(x+h) is the value of the point (x+h). 

The graphic for spatial variance versus distance h represents the 

semivariogram, which allows obtaining the estimative of the variance value for 

different combinations of pairs of points. The semivariance functions are 

characterized by three parameters: sill (σ²), range (φ) and nugget effect (τ²). The 
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sill parameter is the plateau reached by semivariance values and shows the 

quantity of variation explained by the spatial structure of the data. The range 

parameter is the distance where the semivariogram reaches the sill, showing the 

distance until where the data are correlated. The nugget effect is the combination 

of sampling errors and variations that happen in scales smaller than the distance 

between the sampled points [47]. 

When the semivariogram is calculated at object level, an important factor to 

be considered is the lag distance. It should not be larger than the spatial extent of 

the object; on the other hand, an exceedingly small distance fails to provide a 

complete description of textural features. We attempted to find an optimal lag 

distance to ensure that sill values would provide a concise description of data 

variability. We fixed the number of lags as 20 pixels and the lag size equivalent 

to image spatial resolution (30 m), resulting in a lag distance of 600 m [31,48]. 

Using FETEX 2.0 [49] we calculated the semivariogram indices, that 

describe the shape of the experimental semivariograms, and therefore the 

properties that characterize the spatial patterns of the image object. In addition, 

fitting a model is unnecessary, which shortens processing time and reduces the 

errors generated by choosing a sub-optimal model. 

Table 2. Geostatistical features: semivariogram indices described in 

[29]. 

Indices Description Formula 

RVF Ratio 

variance – 

first lag  

RVF=
γ

max_1

γ1
 

AFM Area first 

lag-first 

maximum 
AFM=

h

2
(γ1+2 ( ∑ γ1

max_1-1

i=2

) +γ
max_1

) -

(γ1(hmax_1-h1)) 
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RVF is the ratio between the values of the total variance γ
max_1

 and the 

semivariance at first lag (γ1). Since the semivariogram tends to reach the sill 

near the total variance, this parameter is an indicator of the relationship between 

the spatial correlation at long and short distances. Its value increases when high 

variability at long distances and low variability at short distances occurs. This 

feature also presents high values for images with large primitives or periodic 

patterns [29]. AFM is the area between the semivariogram value in the first lag 

and the semivariogram. This parameter provides information about the 

semivariogram curvature and is also related to the variability of the data (Figure 

4). 

 

Figure 4. Graphic representation of AFM index in the classical 

semivariogram: (σ²) – sill, (φ) – range, (τ²) – nugget effect, γ (h) - 

semivariance, γ
max_1

- total variance and γ1 - semivariance at first lag. 

To verify the potential of the semivariogram indices, we also used spectral 

features for comparative purpose. We extracted the average and standard 

deviation of NDVI values inside the objects. 
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3.4. Time Series 

To generate the time series, we first masked the objects cover by savanna’s 

land cover classes in the first image and eliminated classes as water, pasture, 

bare soil, crops and urban areas. We overlapped the objects with the remaining 

NDVI images in order to extract the geostatistical (RVF and AFM indices) and 

spectral features (average and standard deviation), and then generate the time 

series (Figure 5). 

 

Figure 5. Example of Landsat time series from 2003 to 2016 of (a) 

average NDVI values; (b) standard deviation NDVI values; (c) RVF 

index and (d) AFM index, (e) comprising objects containing (i) 

seasonal changes and (ii) land-cover changes. 
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3.5. Spatio-Temporal Metrics 

We transformed the geostatistical and spectral features time series into two 

summary variables: Change and Trend, adapted from [14]. As described by [41], 

change is the maximum interannual absolute difference in the time series data 

within the observation period (Equation 2). Trend is the slope on linear 

regression applied to the full time series (Equation 3). 

Change= Max (Featuret-Featuret+1), (2) 

 

Trend=
n(∑ t* Featuret

t=n
t=1 )-(∑ Featuret

t=n
t=1 )* (∑ tt=n

t=1 )

n(∑ t2t=n
t=1 )-(∑ tt=n

t=1 )
2 , (3) 

The Change variable contains information on the greatest positive or 

negative change between consecutive data. A high value indicates that a high 

magnitude change occurred or there is an influence of seasonal variation of the 

feature response. The Trend variable indicates the overall (increasing, 

decreasing, or none) trend in the amount of green vegetation across the entire 

period [14]. 

 

3.6. Random Forest Algorithm 

We used the spatio-temporal metrics derived from geostatistical and 

spectral features to train the random forest (RF) algorithm [50]. RF is an 

ensemble method which generates a set of individually trained decision trees and 

combines their results. RF is a robust non-parametric classifier and can 

accommodate many predictor variables [17]. The advantages of RF include 

effectiveness in prediction, efficient implementation on large datasets [50], and 

insensitivity to noise in the training data [51].  

Two parameters need to be set in order to produce the random forest trees: 

the number of decision trees to be generated (Ntree) and the number of variables 
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to be selected and tested for the best split when growing the trees (Mtry) [52]. 

The Gini criterion is used to select the split with the lowest impurity (highest 

homogeneity) at each node. For each tree, the predicted class for each 

observation is obtained and the class with the maximum number of votes among 

the trees is the predicted class of an observation [53].  

The Ntree required to maintain a given level of accuracy has been assessed 

by several authors, and the minimum number of trees for optimal classification 

appears to be between 100 [54] and 300 [55], with the majority of studies setting 

the Ntree value to 500 because the errors stabilize before this number of 

classification trees is achieved [54]. Five hundred trees were grown for each 

classification and the number of features (Mtry) was left at its default values. 

 

3.6. Change Detection Evaluation 

Evaluation of change detection outcomes is communicated using a 

confusion matrix [56] and its accuracy measures: overall accuracy (OA), 

producer accuracy (PA), user accuracy (UA) and the kappa coefficient (k). A 

data set of 1,000 objects well-distributed over the study area, with 500 samples 

per class (Table 3), was assigned based on visual interpretation. Seventy per cent 

of the samples were randomly chosen as training samples, while the rest were 

used as validation samples. We used the class stratified random sampling design, 

that provides the option to increase the sample size in classes that occupy a small 

proportion of area and is one of the easier designs to implement [57]. 
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Table 3. Classification scheme. 

Classes Description Training 

samples 

Validation 

samples 

No-

change 

Areas comprising the same cover in 

both epochs, albeit with changes 

caused by vegetation seasonality 

350 150 

Forest 

change 

Land-cover areas comprising 

deforestation and fires (savannas that 

were converted to bare soil and 

pastures) 

350 150 

The evaluated performances were compared among the four input features 

(average, standard deviation, RVF and AFM) through the confusion matrix 

measures. We also generated a validation map to identify the savannas land-

cover changes (deforestation and fires) by visual interpretation to spatialize the 

areas classified as correct and incorrect. We used as reference data, the map 

provided by [58], which described qualitative and quantitative information of 

savannas vegetation type in the state of Minas Gerais, Brazil. 

4. Results 

4.1. Change Detection 

We used as input data to train the random forest (RF) algorithm the Change 

and Trend spatio-temporal metrics derived from geostatistical and spectral 

features time series. The classification results (Figure 6) achieved overall 

accuracies from 63.72% to 96.53%, with user’s accuracies ranging from 61.53 to 

98.23% and producer’s accuracies 58.94 to 97.67% (Table 4). The AFM index 

provided the best results, reaching 96.53% of overall accuracy and 0.92 of kappa 

index. The standard deviation also produced good results, with a kappa index 

reaching 0.76. The greatest inter-class confusion occurred using the average of 

NDVI values and RVF index, revealing low values of overall, producer and user 

accuracies and kappa index. 
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Table 4. Classification results using groups of features tested.  PA: 

Producer´s accuracy in %; UA: User´s accuracy in %. 

Classes Average Standard 

deviation 

RVF AFM 

PA UA PA UA PA UA PA UA 

No-change 58.94 61.53 88.57 86.91 69.79 74.44 97.67 94.38 

Forest change 67.88 65.48 88.13 89.66 78.50 74.33 95.68 98.23 

Overall 

accuracy  

63.72 88.34 74.38 96.53 

Kappa 

coefficient 

0.26 0.76 0.48 0.92 

 

 

Figure 6. Change maps generated by the features: (a) average; (b) 

Standard deviation; (c) RVF index and (d) AFM index. 

As a result, the feature average and the semivariogram index RVF, were not 

able to accurately capture the differences between forest change and seasonal 
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changes. These features are sensitive to phenological variations, resulting in 

false detection of LULC changes, overestimating the areas undergoing a fire or 

deforestation (Figure 7a, and Figure 7c). The standard deviation spectral feature 

presented good accuracy measures (overall accuracy reaching 88.34%), 

however, the map generated was not the more accurate (Figure 7b). AFM 

semivariogram index provided the best result. This index is directly influenced 

by the sill (σ²) semivariogram parameter (overall variability), which is sensitive 

to land-cover changes and is not affected by changes caused by vegetation 

seasonality, providing good classification results (Figure 7d). 

 

Figure 7. Comparative analysis among the validation map and the 

estimates using (a) average spectral feature; (b) standard deviation 

spectral feature; (c) RVF semivariogram index and (d) AFM 

semivariogram index.  
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5. Discussion 

5.1. NDVI Spatial Variability 

To capture the NDVI variability inside the objects we used the 

semivariogram, that is a graphical representation of the spatial variability in a 

given dataset [59], provided by the sill (σ²), range (φ) and nugget effect (τ²) 

parameters. [60] showed the ability of the semivariogram to depict landscape 

spatial heterogeneity. The differences of NDVI spatial variability between 

landscapes are mainly explained by the type of landscape, where the image 

spatial variability (sill-σ²), increases considerably from homogeneous to 

heterogeneous areas. 

[61] investigated the relationship between semivariogram metrics and 

degree of earthquake-induces changes. In severely changed areas, the earthquake 

caused large spatial variations that were quantified by the semivariogram 

variables of range, nugget, and sill. The range captured coarse-scale spatial 

variability, the nugget captured fine-scale spatial variability, and the sill captured 

overall variability in the landscape. The results indicated that the dominant 

earthquake-induced changes were textural rather than tonal and so lend 

themselves to quantification using semivariograms. 

[62] demonstrated the usefulness of semivariogram shape and metrics, 

generated from NDVI values, derived from Landsat TM images, to detect 

deforestation in an area covered by savanna vegetation. In deforested areas, the 

landscape change caused spatial variations that were quantified by the 

semivariogram metrics of range, sill and shape. The range and sill were the two 

most important and complementary metrics. Both metrics increased their values 

after deforestation and remain similar if the land-cover had not been changed.  

Here, instead of using the semivariogram parameters to quantify the NDVI 

spatial variability we used the RVF and AFM semivariogram indices, as they 



212 

 

synthesize the most relevant information about the shape of the semivariogram. 

In addition, fitting a model is unnecessary, which shortens processing time and 

reduces the errors generated by choosing a sub-optimal model [29]. From the 

wet to dry season the NDVI spatial variability is almost constant and in the 

presence of land-cover changes, such as deforestation and fires, the NDVI 

variability highly increase (Figure 8). Preserved savannas land-cover classes 

(both in wet and dry seasons) have low NDVI variability compared to disturbed 

savannas land-cover classes. This high is explained by the presence of high and 

low NDVI values in the same object, as land cover changes exceed seasonal 

variability.  

 

 

Figure 8. Example of NDVI spatial variability of objects under a seasonal 

change and deforestation land-cover change. 
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The total variance of NDVI values increases considerably from 

homogeneous to heterogeneous landscapes. In homogeneous objects as 

preserved savannas the NDVI semivariance among the pixels is low, thus the 

RVF index is also low because the ymax (~0.0013) is almost similar with the 

semivariance in the first lag (~0.0005). The AFM is also small (0.011) (Figure 

9a). In heterogeneous objects, such as savannas undergoing a deforestation or 

fires, the RVF and AFM indices considerably increase, ranging from 3.33 to 

8.38 and 0.011 to 0.13, respectively (Figure 9b). 

 

Figure 9. Example of NDVI spatial variability of objects under (a) a 

seasonal change and (b) deforestation land-cover change.  

[31] explored and evaluated the performance of semivariogram indices 

derived from NDVI images in an object-based approach to detect land-cover 

changes. The image’s spatial variability changed considerably from native 

vegetation (pre-disaster image) to flooded areas (post-disaster image). The 

flooded areas had a low overall variability compared to native vegetation, 

making possible the detection of change using the semivariogram. 

 

5.2. Seasonal Effects on Change Detection 

We hypothesized that the semivariogram indices (RVF and AFM) are not 

affected by vegetation seasonality, due to the NDVI variability remaining 
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constant in the presence of seasonal changes and substantially increases in the 

presence of land-cover changes, such as deforestation and fires (both natural 

events and human induced). 

Remote sensing of vegetation has an implied link to vegetation phenology. 

Phenology is an environmental process that operates independent of land cover 

or land use change. The ability to use remote sensing images to detect change in 

seasonal areas relies on the capacity to remove the effects of seasonal variations, 

while still identifying changes caused by deforestation, urbanization, floods, and 

fires. To avoid the classification of seasonal effects as land-cover change, time 

series have been used to derive the seasonal patterns when mapping 

deforestation. For instance, [12] developed a powerful change detection 

approach for time series, using 16-day MODIS NDVI images, involving the 

detection and characterization of Breaks For Additive Seasonal and Trend 

(BFAST), that integrates the iterative decomposition of time series into trend, 

seasonal and noise components with methods for detecting changes, without the 

need to select a reference period, set a threshold, or define a change trajectory.  

Rather than using the BFAST seasonal model to account for seasonality in 

image time series, [9] used the spatial context in a pixel-based approach using 

Landsat data assessing how the size of spatial window influences the 

deforestation detection and related computational time. They demonstrated that, 

in dry tropical forest, deforestation events are detected much earlier when the 

spatial context approach is used than when a seasonal model is used. Smaller 

spatial windows achieved higher overall spatial accuracy than larger windows 

and increasing the size of the spatial window resulted in a linear increase in the 

computational time per pixel.  

The window size is an important aspect for the spatial context method, 

since it influences the resultant spatial information due to the amount of variance 

included [63,64]. The spatial moving window needs to be sufficiently larger than 
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the size of the deforestation event to avoid smoothing out the disturbance impact 

from the time series, and also for it to capture local variations [9].  

Here, we used the spatial context (semivariogram indices) in an object-

based approach, without the need of use of the spatial window, basing the 

objects on the characteristics found in the first image of the time series. The time 

series of AFM semivariogram index, provided the best separability (global 

accuracy = 96.53%) between objects with seasonal changes and objects 

undergoing a forest change. Similar results were found by [65] assessing the 

potential of individual geostatistical features derived from bitemporal NDVI 

images to accurately detect land-cover changes. They demonstrated that the 

accuracies of the sill parameter and AFM semivariogram indices were higher 

than those of the other indices, which were not affected by vegetation 

seasonality because they represent the information provided by the entire 

semivariogram rather than specific parts of it. 

 

6. Conclusions 

We have developed a method to mitigate the presence of phenological 

effects from time series using NDVI trends to detect changes over a savannah 

forest ecosystem. The approach combining spatial and spectral information 

allowed for the detection of changes without being impacted by seasonal 

variations. We demonstrated that NDVI spatial variability, captured by AFM 

semivariogram index is not affected by vegetation seasonality, and therefore, can 

produce times series that accurately differentiate forest changes from seasonal 

changes, resulting in fewer classification errors. Our proposed method is simple 

and accurate, efficiently detecting changes while eliminating the effects of 

phenology. 

The spatial context approach we presented in this paper is a novel and 

useful object-based remote sensing method for the detection of forest change 
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events using NDVI Landsat data in areas where forests exhibit strong 

seasonality (i.e., in Brazilian seasonal biomes), addressing the challenge of 

accurately detecting deforestation and fires, eliminating the effects of forest 

phenology, without the need of use de-seasoning models. 
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Background: Improved maps of aboveground biomass (AGB) of large and 

heterogeneous areas are required, mainly in threatened Brazilian biomes such as 

Savannas, Atlantic Forest and Semi-arid woodland. The quantification of 

biomass and carbon in these biomes are roughly estimated due to the uncertainty 

of global maps that are not focused on the stratification of inventory plots into 

forest types. Given this gap, we investigated the potential of data extracted from 

remote sensing (Landsat TM and MODIS products) and spatio-environmental 

variables for mapping the spatial distribution AGB of six heterogeneous 

vegetation types in a Savanna-Forest transition in Minas Gerais state, southeast 

Brazil. We selected the best variables to predict the AGB and compared the 

performance of random forest (RF) regression using non-stratified and stratified 

models based on vegetation types. We used regression-kriging technique to 

correct the maps developed by RF regression. 

Results: The results suggest that the vegetation types stratification decreases the 

root mean square error (RMSE) as well as the mean absolute error (MAE), 

mainly in grassland cerrado (RMSE reduction of 53.48% and MAE reduction of 

44.62%), woodland cerrado (RMSE reduction of 43.71% and MAE reduction of 

34.73%) and cerrado sensu stricto (RMSE reduction of 20.68% and MAR 

reduction of 17.46%). Residuals analysis of non-stratifified model indicated 

slight trends that were eliminated using the stratified models. The variables 

selected are associated with each vegetation type through their spatial 

distribution and vegetation phenology. The number of variables is driven by the 

spatial distribution and it is a characteristic of the seasonality effects. The total 

area of AGB in Minas Gerais state accounts 839,375,640 tones, with mean 

values ranging from 13.32 t/ha (grassland cerrado) to 124.03 t/ha (wetland 

forests). 

Conclusions: The stratification into vegetation types not only improved the 

accuracy of AGB estimative, but also allowed RF regression to select the 
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smallest number of variables that offer the best predictive model performance. 

The improvement in AGB estimates is given by spatial distribution and 

seasonality effects of each vegetation type, which is achieved by stratifying the 

models to minimize the Savanna-Forest transition heterogeneity. The refining 

map and the understanding of how the variables characteristics are associated 

with the AGB enable researches to improve the roughly estimates of greenhouse 

gas emission and also helps on the selection of appropriate variables that best 

modelling the aboveground biomass in Savanna-Forest transition areas. 

 

Keywords: Remote Sensing; Random Forest; Regression Kriging; Savanna; 

Atlantic Forest, Semi-arid woodland; Biomass. 
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Background 

  The high levels of terrestrial carbon stocks found in Brazil’s forest 

biomes associated with the land-cover changes such as deforestation and fires, 

make Brazil one of the five biggest carbon dioxide emitting nations globally 

(Baccini et al. 2012; Matthews et al. 2014). Brazil has a total area of about 

8,514,877 km², from which 7% occurs in Minas Gerais State, southeast region 

(586,528 km²). This large area encompasses landscape variations ranging from 

Savanna, Atlantic Forest, and Semi-arid woodland, representing 57%, 41%, and 

2% of the native vegetation, respectively (Scolforo et al. 2015). Atlantic Forest 

and Savanna are the Brazilian biomes that have most suffered anthropogenic 

impacts (land-cover changes and deforestation are responsible for 54% of the 

total greenhouse gas (GHG) emissions and have been classified among the most 

threatened biomes of the world (Myers et al. 2000). The high rates of 

deforestation caused GHG, roughly estimated as there are only a very limited 

number of studies that deal with the quantification of biomass and carbon in 

these biomes with a comprehensive manner (Ribeiro et al. 2011). Refining these 

estimates requires improved knowledge of the density and spatial distribution of 

forest biomass (Baccini et al. 2008), disaggregating large scale estimates 

(Wilson, Woodall, and Griffith 2013).  

 There are numerous approaches for estimating aboveground biomass 

(AGB) from remotely sensed data in large areas (Lu 2006). In general, these 

data are empirically linked to AGB measurements of field plots (Baccini et al. 

2004; Baccini et al. 2008; Zheng et al. 2004; Yin et al. 2015; Zhu and Liu 2015; 

Rodríguez-veiga et al. 2016; Aslan et al. 2016; Gizachew et al. 2016; Hu et al. 

2016), ranging from simple linear regression to complex machine learning 

algorithms (MLA) (Powell et al. 2010; Gleason and Im 2012; Zhou et al. 2016) 

and regression kriging technique (Viana et al. 2012; Su et al. 2016; Castillo-

Santiago et al. 2013; Galeana-Pizaña et al. 2014; Scolforo et al. 2016).  
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Landsat images are the most medium-resolution data commonly used 

due to the longest data record along with a spatial resolution of 30 meters 

(Powell et al. 2010; Lu et al. 2012; Main-Knorn et al. 2013; Zhu and Liu 2015). 

Seasonal time-series data at coarse resolution (e.g. MODIS) have been explored 

for estimating AGB at large scales (Yin et al. 2015; Arantes, Ferreira, and Coe 

2016; Rodríguez-veiga et al. 2016), in order to improve the accuracy of the 

monitoring forest attributes (Dymond, Mladenoff, and Radeloff 2002).  

 Identifying suitable variables for developing a model is often critical (Lu 

2006), mainly in large and high heterogeneity areas comprising vegetation types 

ranging from Savannas to Forests, that have their own phenology, local climate 

and geographic location that makes AGB mapping more difficult in comparison 

with homogeneous regions (Asner et al. 2012). Recent studies suggest that the 

stratification of inventory plots into forest types can improve the precision of 

AGB estimates (Heurich and Thoma 2008; Ribeiro et al. 2011; Dahlke et al. 

2013; Latifi et al. 2015; Fayad et al. 2016) making easier the appropriate 

selection of variables that best explain the data variability behaviour (Zhao et al. 

2016). 

 Based on this gap, the questions that motivate this study were: (i) how 

does the stratification into vegetation types improves the predictive quality of 

AGB random forest model? (ii) How do the remote-sensing and spatio-

environmental variables are associated with the vegetation types?  

  To respond these questions, we investigated the potential of data 

extracted from Landsat TM, MODIS products and spatio-environmental 

variables to map the spatial distribution of aboveground biomass (ABG) of six 

heterogeneous vegetation types in the Atlantic Forest, Savanna, and Semi-arid 

woodland Biomes in Minas Gerais State, Brazil. The approach leverages a 

combination of extensive field data that provide accurate information at the plot 

level, and variables that are continuous in space. The random forest (RF) 
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regression algorithm was adopted due to its capability to select and rank 

important variables for AGB prediction. We used regression-kriging technique, 

by kriging the residuals generated by the models, to improve the map produced 

by RF. Specifically, the objectives of this study were:  

(i)    to compare the performance of random forest regression model for AGB 

using non-stratified and stratified models based on vegetation types; and  

(ii)  to select and drive the best variables to predict the AGB of each vegetation 

type. 

 

Methods 

 We linked the aboveground biomass field inventory data with the 

following variables: spatio-environmental, comprising geographic, topographic 

and climate data; Landsat TM spectral bands and vegetation indices and monthly 

temporal series of MODIS products. As image processing, we resampled and 

mosaic the images to accurately extract the data values as inputs to training 

random forest regression algorithm. We classified the plots into six vegetation 

types in Savanna, Atlantic forest and Semi-arid woodland biomes to perform the 

stratified random forest regression model. We identified the smallest number of 

variables that offer the best predictive model and evaluated the models 

performance: non-stratified AGB map versus stratified AGB map. In the map 

that provided the best result, we applied regression kriging technique to produce 

the improved AGB map (Figure 1). 
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Figure 1. The workflow of the aboveground biomass (AGB) modeling approach. 

 

Study area and field inventory data 

 Minas Gerais (MG) state is located in the southeast Brazil (Figure 2a), 

encompassing the Savanna, Atlantic Forest, and Semi-arid woodland biomes 

(Figure 2b). The Brazilian Savanna is a heterogeneous biome (Miranda et al. 

1997), comprising vegetation types of grassland cerrado (shrub type of savanna, 

encompassing both herbaceous vegetation and scattered small trees), cerrado 

sensu stricto (savanna formation with trees and shrubs up to 8–10m high and 

with a grass understory) and woodland cerrado (forest formation with trees up to 

a height of 20 m) (Ribeiro et al. 2011). Atlantic forest occurs in the south-central 

and east of MG state and is composed of semideciduous and rain forests 

(Ombrophylous Forest) vegetation types. Semi-arid woodland is an ecosystem 

occupied by tropical dry forest and represents the vegetation type of deciduous 

forest. They are the unique biome for being in areas with the highest 

temperatures and the lowest amount of rain, being characterized as the region 
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with the greatest meteorological limitations of the MG state (Scolforo et al. 

2015). 

 The climate variability of MG state indicates a negative precipitation 

and a positive temperature gradient from south to north (Figure 2c and Figure 

2d). This variability helps to explain the predominance of these biomes. The 

elevation ranges from 30 to 2,824 meters and the greatest altitude variation is 

found in the eastern region (Figure 2e). 

 

 

Figure 2. (a) Geographic location of MG in Brazil; (b) Biomes and plots 

spatially distributed in MG State; (c) Average annual precipitation in MG state; 

(d) Average annual temperature in MG state; and (e) Elevation of MG state. 

 

 A total of 3,284 field plots were located within the study area (see 

Figure 2a). The square sample plots (10 x 100m) were established in 2006 

during the Project “Forest Inventory of Minas Gerais”, conducted by the Federal 

University of Lavras, MG, Brazil (Scolforo et al. 2008). The data used in the 

analysis was the aboveground biomass containing in the plots. The methodology 
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to determine the AGB is described in Scolforo et al. (2008). There are plots in 

different degrees of anthropization, different sites, different successional stages, 

and trees with different diameters and heights, leading to a high variability. The 

descriptive statistics for each vegetation types (Table 1) highlight the structural 

variability among them. High biomass and standard deviation was observed in 

semideciduous, wetland and deciduous forest. The lowest values in grasslands 

occur because these vegetation type is characterized by herbaceous vegetation 

with scattered small trees. 

 

Table 1. Descriptive statistics of the measured above ground biomass (t/ha). 

Vegetation types  Min Mean Max Standard Deviation 

Grassland cerrado 1.08 13.54 49.67 10.32 

Woodland cerrado 10.81 56.30 177.97 29.98 

Cerrado sensu stricto  10.02 34.57 170.23 22.38 

Deciduous forest  10.61 74.78 295.45 55.05 

Semideciduous forest  10.34 102.52 398.16 62.31 

Rain forest 10.07 133.92 345.25 69.38 

 

Spatio-environmental data 

 We used as spatio-environmental data, 19 climatic variables (1 km² of 

spatial resolution) acquired from WorldClim (Hijmans et al. 2005), a digital 

elevation model (30 meters of spatial resolution) developed from the ‘‘Shuttle 

Radar Topography Mission” (SRTM) and latitude and longitude geographical 

coordinates (Table 2).  
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Table 2. Spatio-environmental variables used to model AGB. 

Variables Description 

Bio 1 Annual Mean Temperature (ºC) 

Bio 2 Mean Diurnal Range (Mean of monthly (ºC) 

Bio 3 Isothermality (BIO2/BIO7) (* 100) (ºC) 

Bio 4 Temperature Seasonality (standard deviation *100) (ºC) 

Bio 5 Max Temperature of Warmest Month (ºC) 

Bio 6 Min Temperature of Coldest Month (ºC) 

Bio 7 Temperature Annual Range (BIO5-BIO6) (ºC) 

Bio 8 Mean Temperature of Wettest Quarter (ºC) 

Bio 9 Mean Temperature of Driest Quarter (ºC) 

Bio 10 Mean Temperature of Warmest Quarter (ºC) 

Bio 11 Mean Temperature of Coldest Quarter (ºC) 

Bio 12 Annual Precipitation (mm) 

Bio 13 Precipitation of Wettest Month (mm) 

Bio 14 Precipitation of Driest Month (mm) 

Bio 15 Precipitation Seasonality (Coefficient of Variation) (mm) 

Bio 16 Precipitation of Wettest Quarter (mm) 

Bio 17 Precipitation of Driest Quarter (mm) 

Bio 18 Precipitation of Warmest Quarter (mm) 

Bio 19 Precipitation of Coldest Quarter (mm) 

DEM Elevation (m) 

Latitude Latitude 
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Longitude Longitude 

 

Remote sensing data  

 We used Landsat TM (Thematic Mapper) and six MODIS (Moderate 

Resolution Imaging Spectroradiometer) products (Table 3) as remote sensing 

data. We acquired 35 scenes of Landsat TM to recover the study area, 

downloaded from the United States Geological Survey for Earth Observation 

and Science (USGS\EROS), with the necessary geometric corrections and 

reflectance values at the ground level (Young et al. 2017). For the year of 2006 

(the same as inventory data collection), we selected one image date in which the 

scene was entirely without clouds.  

 The MODIS sensors assembled on the Terra and Aqua satellites have 

got a total of 36 spectral bands, seven of which are designed specifically for land 

applications with spatial resolutions that range from 250 m to 1,000 m and 

temporal resolution of one day (Mitchard et al. 2014). We used the Terra 

MODIS products computed from atmospherically corrected, bidirectional 

surface reflectance masked for clouds, heavy aerosols, and cloud shadows. We 

selected one scene per month (during the year 2006) to explore the temporal 

resolution of these products. Four MODIS tiles, namely, h13v10, h13v11, 

h14v10, and h14v11, were required to cover Minas Gerais state as a whole.  

 The images were mosaicked and resampled to Albers Equal Area Conic 

projection due to area and shape preserving characteristics of this projection, 

since to use a standard Universal Transverse Mercator (UTM) projection would 

have spanned multiple zones, introducing potential projection related errors in 

the final map output (Duro, Franklin, and Dube 2012).  

 

 

 

https://modis.gsfc.nasa.gov/about/
https://modis.gsfc.nasa.gov/about/
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Table 3. Remote sensing variables used to model AGB. 

Remote 

sensing data 
Variables 

Spatial 

resolution 

(m) 

Landsat TM 

TM B1 (blue) 

TM B2 (green) 

TM B3 (red) 

TM B4 (NIR) 

TM B5 (SWIR 1) 

TM B7 (SWIR 2) 

NDVI 

EVI 

SAVI 

30 

MOD9Q1 

MODIS 

Surface 

Reflectance 

Surface Reflectance Band 1 

Surface Reflectance Band 2 

 
250 

MOD13Q1 

vegetation 

index (VI) 

Red reflectance Band 1 

NIR reflectance Band 2 

Blue reflectance Band 3 

MIR reflectance Band 7 

NDVI 

EVI 

250 

MOD44B 

Vegetation 

Continuous 

Cover/Fields 

Percent Tree Cover 

250 

MOD17A2H 

Gross primary 

productivity 

GPP (Gross Primary Production) 

PSN (Net Photosynthesis) 500 

MOD15A2H 

LAI/FPAR 

LAI (Leaf area index) 

FPAR (Fraction of photosynthetically 

active radiation absorbed by vegetation) 

500 

M11A2 

Land Surface 

Temperature 

and Emissivity 

 

LSTd (Dailyday time Land-surface 

Temperature) 

LSTn (Daily nightime Land-surface 

Temperature) 

Band 31 emissivity 

Band 32 emissivity 

1000 
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Random forest regression algorithm 

 In random forest (Breiman 2001), a large number of trees are grown 

with the root node containing a different bootstrap sample of the data with the 

same number of cases as the original data. At each node, splitting is performed 

using a randomly selected subset of the predictor variables. Random forest is 

less sensitive to noise in the training data and tends to result in more accurate 

models (Baccini et al. 2008).  We used random forest package (Liaw & Wiener 

2002) available in the R software (R Development Core Team, 2014).  

 About 70% of the data were randomly selected and used as training data 

to fit the model. The remaining 30% was used to test the model’s performance. 

We computed the coefficient of determination (R², in %) which indicates the 

part of the observed variability that is explained by the model; the root-mean-

square error (RMSE, in t/ha) which measures the average difference between 

values predicted by the model and observations; and, the mean absolute error 

(MAE, in %) which indicates an average over or underestimation bias by the 

model (Vieilledent et al. 2016). 

 To optimize the model, we examined the effect of the number of 

randomly selected variables (mtry) on the prediction error (Hamza and Larocque 

2005). We optimized the mtry value by creating random forest ensembles for all 

possible mtry values and then selecting the optimal mtry value based on the 

lowest RMSE. The number of decision trees (Ntree) was set to 1,000 (Millard 

and Richardson 2015). 

 

Variables selection  

 In order to improve the AGB estimative achievement of a good 

predictive performance, we identified the smallest number of variables that are 

able to fit the best predictive power and help in the interpretation of the final 

random forest (RF) regression model, employing a backward feature elimination 
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(Díaz-Uriarte and Alvarez de Andrés 2006). We first took into account the 

measures of importance to obtain an initial variable ranking and then proceeded 

with an iterative backward elimination of the least important variables. In each 

iteration, we eliminated the 20% least important variables and a new random 

forest was built by training with the remaining features for the assessment of 

RMSE. The backward stepwise selection allows us to put all variables into the 

random forest and eliminate unnecessary or partially correlated features (Guan et 

al. 2013). Besides obtaining the best overall predictive accuracy, variables 

selection allowed us to simplify the modelling process and identify the minimum 

number of features that offer the best predictive accuracy (Ismail and Mutanga 

2010). 

 

Stratification into inventory plots 

 We stratified the plots into six vegetation types described in Scolforo et 

al. (2008) (Figure 3). In each stratum, we modelled the AGB using the random 

forest algorithm method described above. The backward elimination procedure 

was also used to identify the smallest number of features that provides the best 

predictive results. 
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Figure 3. Vegetation types spatial distribution used to generate the stratified 

AGB random forest model. 
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 Deriving the aboveground biomass maps 

 To derive the AGB maps, we created continuous cells with dimensions 

of 1 ha (100 x 100 m) throughout the length of the vegetation in Minas Gerais 

State (Carvalho et al. 2008). In each cell containing the values of the selected 

variables, we applied the random forest regression model to predict the AGB. 

We generated the following AGB maps: (i) non-stratified; and (ii) stratified by 

vegetation types (6 maps).  

 We compared the predictions of the maps capability computing the 

statistical precision mean absolute error (MAE, in %), root mean squared error 

(RMSE, in t/ha) and by the visual analysis of residuals graphs. 

 

Regression-kriging  

 We applied regression-kriging technique to improve the map generated 

by random forest regression (Guo et al. 2015) by kriging the residuals produced 

by the model. The residuals are obtained by subtracting the predicted from the 

observed values, and then interpolated them using ordinary kriging. The 

residuals map is created and merged into AGB map previously developed. This 

procedure allows for removing the trends on the estimates by the geographical 

model, promoting a final unbiased map. This procedure was applied only in the 

map that provided the best results (non-stratified versus stratified). 

 The residuals were spatially modelled using ordinary kriging by fitting 

theoretical semivariogram models (specifically the Gaussian, the Spherical, and 

the Exponential) using the weighted least squares method. The selection and 

validation of the best semivariogram model was based on reduced mean error 

(ER) and standard deviation of reduced mean error (SDE), which were 

calculated on the basis of the cross validation process (Cressie 1991). 
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Results 

Non-stratified random forest model performance  

 The random forest backward method selected seven variables that 

offered the best predictive result: Longitude, SRTM, MOD11_17LSTd (product 

MODIS 11, julian day 17 and dailyday time land-surface temperature variable), 

MOD11_113LSTd (product MODIS 11, julian day 113 and dailyday time land-

surface temperature variable), TM B3, MOD11_145LSTn (product MODIS 11, 

julian day 17 and daily nigh time land-surface temperature variable) and TM B5 

(Landsat SWIR 1). These variables, except SRTM, have a negative Pearson’s 

correlation with AGB, reaching 0.25 with TM B5 (Figure 4).  

 

 

Figure 4.  Variables of non-stratified model: (a) Number of features versus 

RMSE; (b) Selected features versus % IncMSE and (c) Person´s Correlation 

among the selected features and AGB (t/ha). 

 

 The non-stratified model presented an R² value equal to 0.45. This value 

is explained by the wide variation found in the data. The RMSE and MAE were, 
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respectively, 44.68 t/ha and 38.51%. In addition, the model presented randomly 

distributed residuals with a slight trend, indicating underestimates of AGB  

(Figure 5). 

 

 

Figure 5. Residuals analysis of RF non-stratified model: (a) Distribution of the 

residuals; (b) Scatter plots of measured value versus estimated value; and (c) 

Histogram of AGB residuals. 

 

 We also analysed the predictive performance of RF regression non-

stratified model by vegetation types (Table 4). Grassland cerrado, deciduous 

forest and cerrado sensu stricto presented the highest MAE%. The highest 

RMSE was found in wetland forests, semideciduous and deciduous forests. The 

residual distribution of each vegetation types indicates that the model present 

slight trends, mainly towards underestimates in rainforest, deciduous forest, and 

woodland cerrado, and overestimates in grassland cerrado (Figure 6).  
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Table 4. Predictive performance of the random forest regression non-stratified 

model by vegetation types.  

Vegetation types RMSE (t/ha) MAE% 

Rain forests 62.08 36.52 

Deciduous Forest 45.31 35.36 

Grassland Cerrado 16.60 82.69 

Woodland cerrado 29.26 32.02 

Cerrado stricto sensu 18.32 41.50 

Semideciduous forest 52.50 39.29 

 

 

Figure 6. Residuals analysis by non-stratified RF model by vegetation type: (a): 

Rain forests; (b) Deciduous forest; (c) Grassland cerrado; (d) Woodland cerrado; 

(e) Cerrado stricto sensu; (f) Semideciduous forest. 

 

 From the AGB map generated by non-stratified model (Figure 7) using 

the seven variables selected, some discussion about the AGB distribution in the 

state of MG can be highlighted. The total area of AGB estimated by non-

stratified model is 968,646,297 tons (Table 5) ranged from 5.53 to 278.76 t/ha. 
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The central, northwest and north regions presented low values of AGB. Cerrado 

sensu stricto, grassland cerrado and deciduous forest are predominant in these 

regions, which helps to explain the low amount AGB. In addition, the low AGB 

in these regions results from the combination of high temperatures and low 

amount rain. The west region presents intermediate values, due to the presence 

of woodland cerrado, and the south, central and east of MG presented high 

values of AGB, due to the predominance of semideciduous forest and rain 

forests, with lower temperatures and higher amount rain over the year.  

 

Table 5. Total aboveground biomass by vegetation type estimated by non-

stratified random forest model. 

Vegetation types AGB (T) Area (ha) 

Rain forests 25,809,743 224,108 

Deciduous forest 128,060,012 2,029,065 

Grassland Cerrado 82,490,430 1,484,230 

Woodland cerrado 22,923,814 353,531 

Cerrado stricto sensu 300,647,793 5,460,099 

Semideciduous forest 408,714,504 5,171,549 

Total 968,646,297 14,722,582 
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Figure 7. AGB map of Minas Gerais state estimated by non-stratified RF model. 

 

Stratified random forest model performance  

 The random forest backward procedure method selected singular 

variables for each vegetation type. For those widely distributed in Minas Gerais 

state (semideciduous forest, cerrado sensu stricto, and grassland cerrado) the 

number of variables was greater, ranging from 9 to 24. For those that are 

concentrated in specific regions of Minas Gerais state (woodland cerrado, 

deciduous forest, and rain forest) the number of variables selected was lower, 

ranging from 2 to 4 (Figure 8).  
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Figure 8. Number of variables selected by random forest stratified model for 

each vegetation type. 

 

 The stratified models presented an R² value ranging from 0.15 to 0.52. 

The rain forest presented the lowest R² and the highest root mean square error 

(RMSE). Woodland cerrado presented the greatest R² and the lowest mean 

absolute error (MAE%), indicating this prediction as the most accurate (Table 

6). The residuals distribution of each vegetation types presented a balanced 

spatial distribution with non-characterized trend, indicating an accurate 

prediction of AGB (Figure 9). 
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Table 6. Predictive performance of the random forest regression stratified model 

by vegetation types.  

Vegetation types R² RMSE MAE% 

Rain forest 15.39 57.36 34.56 

Deciduous forest 37.05 42.76 34.74 

Grassland cerrado 35.51 7.72 54.73 

Woodland cerrado 52.26 16.47 23.62 

Cerrado stricto sensu 51.97 14.53 31.51 

Semideciduous forest 20.19 51.25 37.84 

 

 

Figure 9. Residuals analysis by stratified RF model by vegetation type: (a): Rain 

forests; (b) Deciduous forest; (c) Grassland cerrado; (d) Woodland cerrado; (e) 

Cerrado stricto sensu; (f) Semideciduous forest. 

 

 We modelled the rain forest AGB using Landsat TM B3 (red waveband) 

and EVI (enhanced vegetation index). The R² was low (0.15), however the MAE 

(%) presented good results (36.52%). The highest values of rain forest 

aboveground biomass are concentred in the west strip of this vegetation type and 
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the lowest ones are distributed throughout the area. The AGB values ranged 

from 39.35 to 261.98 t/ha (Figure 10a). These high values explain the high 

RMSE obtained (57.36%). 

 The deciduous forest AGB ranged from 15.97 to 166.34 t/ha (Figure 

10b). The random forest regression selected MOD9_17SR2 (product MODIS 9, 

julian day 9 and surface reflectance band 2 variable), MOD11_17LSTd (product 

MODIS 11, julian day 17 and dailyday time Land-surface temperature variable), 

MOD15_121FPAR (product MODIS 15, julian day 121 and fraction of 

photosynthetically active radiation absorbed by vegetation variable) and 

MOD17_241GPP variables (product MODIS 17, julian day 241 and gross 

primary production variable). 

  The grassland cerrado map (Figure 10c) presented AGB ranging from 

3.66 to 34.01 with higher values in the west part of its occurrence. Random 

forest regression selected nine variables: three from Landsat TM (SAVI, EVI 

and B4-NIR waveband), four from MODIS 13 product (MOD13_113NIR, 

MOD13_145NIR, MOD13_177red and MOD13_209NIR), MOD9_145RS2 and 

MOD11_113LSTd). 

 About woodland cerrado, random forest regression selected four 

variables: EVI (enhanced vegetation index derived from Landsat TM), 

MOD15_241FPAR (product MODIS 15, julian day 241 and fraction of 

photosynthetically active radiation absorbed by vegetation variable), Latitude 

and TM B3 (red waveband). The AGB ranged from 29.23 to 134.72 t/ha with 

the high values concentrated in the north of its occurrence (Figure 10d). 

 The random forest regression selected 12 variables to model cerrado 

sensu stricto and 24 variables to model semideciduous forest (Table 7). The 

AGB ranged from 14.25 to 113.60 t/ha and 38.29 to 245.95 t/ha for cerrado 

sensu stricto (Figure 10e) and deciduous forest (Figure 10f), respectively.  
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Table 7. Selected variables by random forest regression for cerrado sensu stricto 

and semideciduos forest. 

Cerrado sensu stricto Semideciduous forest 

TM B5 TM B1 

SAVI TM B2 

MOD9_145SR1 TM B3 

MOD9_241SR2 TM B5 

MOD13_17red TM B7 

MOD13_17blue NDVI 

MOD13_17NDVI Bio 2 

MOD13_241blue Bio 4 

MOD17_241NET Bio 6 

MOD17_289NET Bio 8 

MOD17_289GPP Bio 9 

Longitude Bio 12 

 Bio 18 

 Bio 19 

 MOD11_113LSTd 

 MOD11_145LSTd 

 MOD11_145LSTn 

 MOD11_17LSTd 

 MOD13_177NDVI 

 MOD44_065 

 MOD15_209FPAR 

 Longitude 

 Latitude 

 SRTM 
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Figure 10. AGB map of Minas Gerais state estimated by stratified RF model: 

(a): Rain forest; (b) Deciduous forest; (c) Grassland cerrado; (d) Wooded 

cerrado; (e) Cerrado stricto sensu; (f) Semideciduous forest. 

 

 The total area of AGB estimated by stratified model is 871,939,468 tons 

(Table 8), ranging from 3.66 to 261.98 t/ha.  
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Table 8. Total aboveground biomass by vegetation type estimated by non-

stratified random forest model. 

Vegetation types AGB (T) Area (ha) 

Rain forests 29,787,278 224,108 

Deciduous Seasonal Forest 138,614,744 2,029,065 

Grassland Cerrado 21,606,086 1,484,230 

Woodland cerrado 27,616,639 353,531 

Cerrado stricto sensu 160,311,870 5,460,099 

Semideciduous forest 494,002,853 5,171,549 

Total 871,939,468 14,722,582 

 

Comparative analysis of random forest models performance 

 The performance of non-stratified versus stratified AGB models was 

assessed based on the mean absolute error (MAE) and root mean squared error 

(RMSE) statistics (Table 9). And also, we analysed the scatter plots of measured 

values versus estimated values of each vegetation type. 

 The stratified models significantly improved the AGB prediction by 

reducing the MAE and RMSE for all vegetation types, mainly woodland cerrado 

(RMSE decreased from 29.26 to 16.47 t/ha), grassland cerrado (MSE reduced 

from 82.69 to 54.73%) and cerrado sensu stricto (RMSE decreased from 18.32 

to 14.53 t/ha and MSE reduced from 41.50 to 31.51%). 
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Table 9. Root mean squared error (RMSE) and mean absolute error (MAE (%) 

of random forest models.  

 Vegetation types 
Non-stratified model Stratified model 

RMSE MAE% RMSE MAE% 

Rain forests 62.08 36.52 57.36 34.56 

Deciduous forest 45.31 35.36 42.76 34.74 

Grassland cerrado 16.60 82.69 7.72 54.73 

Woodland cerrado 29.26 32.02 16.47 23.62 

Cerrado stricto sensu 18.32 41.50 14.53 31.51 

Semideciduous forest 52.50 39.29 51.25 37.84 

 

 The increasing on the performance of random forest stratified models is 

also highlighted in the scatter plot graphics. The measured AGB versus 

estimated by non-stratified model (Figure 11) indicates a slight trend of 

underestimates (rain forest, deciduous forest, and woodland cerrado) and 

overestimates (grassland cerrado). These trends did not occur in the stratified 

random forest models (Figure 12), highlighting the improvements of using these 

models.  
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Figure 11. Scatter plots of measured value versus estimated value by non-

stratified RF model by vegetation type: (a): Rain forest; (b) Deciduous forest; (c) 

Grassland cerrado; (d) Woodland cerrado; (e) Cerrado stricto sensu; (f) 

Semideciduous forest. A 1:1 line (black, dashed) is provided for reference. 
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Figure 12. Scatter plots of measured value versus estimated value by stratified 

RF model by vegetation type: (a): Rain forests; (b) Deciduous forest; (c) 

Grassland cerrado; (d) Woodland cerrado; (e) Cerrado stricto sensu; (f) 

Semideciduous forest. A 1:1 line (black, dashed) is provided for reference. 

 

Regression-kriging 

 We modeled the residuals by the stratified random forest regression.   

The experimental and modeled semivariograms for the residuals derived from 

each vegetation type for aboveground biomass (Figure 13) presented reduction 

in both mean error (RE) and standard deviation of reduced errors (SRE)(Table 

10).  
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Table 10. Semivariogram statistics for residuals from the regression models. 

Vegetation types RE SRE 

Rains forest 0.023 0.85 

Deciduous forest -0.004 1.18 

Grassland cerrado 0.024 1.24 

Woodland cerrado -0.012 0.89 

Cerrado stricto sensu 0.019 1.00 

Semideciduous forest 0.010 1.10 

 

 

Figure 13. Theoretical and experimental semivariogram for the residual 

aboveground biomass (t/ha) by vegetation type. 

 

 

 



256 

 

Improved aboveground biomass map  

 We applied the regression-kriging tecqnique into the six maps generated 

by the stratified models. We corrected the individuals vegetation type AGB 

maps, by adding the residuals map into the predicted values map by the models. 

The total area of AGB for Minas Gerais State is about 839,375,640 tones, with 

mean values ranging from 13.32 t/ha (grassland cerrado) to 124.03 t/ha (rain 

forests) (Table 11). The individual’s maps area presented in Figure 14.  

 

Table 11. Total and mean aboveground biomass (t/ha) of Minas Gerais state by 

each vegetation type. 

Vegetation types AGB (T) Mean AGB (t/ha) Area (ha) 

Rain forests 27,795,005 124.03 224,108 

Deciduous Seasonal Forest 139,216,378 68.61 2,029,065 

Grassland Cerrado 19,762,640 13.32 1,484,230 

Woodland cerrado 25,893,228 73.24 353,531 

Cerrado stricto sensu 163,977,289 30.03 5,460,099 

Semideciduous forest 462,731,101 89.48 5,171,549 

Total 839,375,640 

 

14,722,582 
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Figure 14. Improved AGB maps by vegetation types: (a) Rain forest; (b) 

Deciduous forest; (c) Grassland cerrado; (d) Woodland cerrado; (e) Cerrado 

stricto sensu; (f) Semideciduous forest. 

 

Discussion 

 We proposed a stratification approach combined with regression-kriging 

technique to improve aboveground biomass models in large and heterogeneous 

Savanna-Forest transition areas in Minas Gerais state, Brazil. The efffect of 

stratification on the AGB predictions in combination with the appropriate 

selecion of variables was investigated. First, we compared the predictive 

perfomance of non-stratified map with the stratified one. Second, we applied the 

regression kriging, by kriging the model’s residuals, and then merged it into the 
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stratifed map to generate the improved aboveground biomass of Minas Gerais 

state, Brazil (Figure 15). 

 

 

Figure 15. (a) aboveground biomass map generated using non-stratified model; 

(b) aboveground biomass map generated using stratified model; (c) residuals 

kriging of stratified models and (d) final aboveground map of Minas Gerais 

state.  

 

 The results indicate that the stratification into vegetation types decreases 

the root mean square error and mean absolute error, mainly in grassland cerrado 

(RMSE reduction of 53.48% and MAE reduction of 44.62%), woodland cerrado 

(RMSE reduction of 43.71% and MAE reduction of 34.73%) and cerrado sensu 
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stricto (RMSE reduction of 20.68% and MAR reduction of 17.46%). The 

stratified rain forest, deciduous and semideciduous forests model were slightly 

better than the non-stratified one (see Table 9). Latifi et al. (2015) analyzed the 

impact of stratifying forest data into three classes (broadleaved, coniferous and 

mixed forest) to estimate aboveground forest biomass. The results revealed 

marginal advantages for the strata prediction models over the non-stratified 

ones. A previous study clearly illustrated that stratification of the sample plots 

can help to improve the accuracy of the estimation of forestry stand parameters. 

However, this holds true to a different degree for each one of the individual 

stand parameters, whereas the standing volume and density were significantly 

enhanced (Heurich and Thoma 2008).  

 In the non-stratified model, that mixed the Savanna-Forest areas, seven 

variables were selected (see Figure 6). Among them, two are geographical 

(longitude and elevation), and the remaining five were taken from remote 

sensing. From the remote sensing, three are climate variables, displaying 

temperature and two are from medium spatial resolution, displaying spectral 

information that are negative correlated with aboveground biomass. Scolforo et 

al. (2015) showed correlations between forest carbon and geographical variables 

(latitude and altitude), which is expected due to their relation with the climate 

variables. In summary, the variables that provide the best performance of non-

stratified model are related with regional scale, providing spatio-environmental 

information. 

 In the stratified models, the variables selection of each vegetation type 

occurred as a function of their spatial distribution and vegetation phenology. The 

number of variables was driven by the spatial distribution and it is a 

characteristic of the seasonality effects (Figure 16). For vegetation types that are 

widely distributed throughout Minas Gerais (semideciduous forest, cerrado 

sensu stricto and grassland cerrado) the random forest regression selected a 



260 

 

higher number of variables to best fit the model than those vegetation types that 

are local distributed in the study area (woodland cerrado, deciduous forest and 

rain forest). Also, as the vegetation phenology exists, the temporal variables 

were selected instead of the spectral and spatial ones. 

 Random forest modelled rainforest using a small number of variables, 

comprising only remote sensing data (TM B3 and EVI). This vegetation type is 

local distribute (southern Minas Gerais), not requiring the use of spatio-

environmental variables to explain and predict the AGB distribution. And also, 

the rainforests are evergreen and do not need the use of seasonal variables to 

improve its capability.  

 Deciduous forest are seasonally dry tropical forest, submitted to a 

seasonal rainfall regime (Santos et al. 2011). Thus, random forest regression 

selected only temporal remote sensing variables derived from MODIS products 

to model the AGB of this vegetation type (MOD9_17SR2, MOD11_17LSTd, 

MOD15_121FPAR and MOD17_241GPP). These variables cover both the wet 

and dry seasons, capturing the phenological effects of deciduous forests. The 

low number of variables is explained by the local distribution of this vegetation 

type in the state of Minas Gerais. 

 Random forest modelled grassland cerrado using 9 remote sensing 

variables, mixing 33% of Landsat TM and 67% of MODIS products. Grassland 

cerrado are widespread in MG state and also are influenced by seasonality 

effects (Veldman et al. 2015). 

 Woodland cerrado comprising dense woodland with high trees 

(Schwieder et al. 2016) are located in the western Minas Gerais state. Because of 

its local vegetation type, random forest regression selected four variables 

comprising 25% of environmental and 75% of remote sensing data (EVI, TM B3 

and MOD15_241FPAR).  
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 Random forest modelled semideciduous forest using 24 variables, 

mixing spatio-environmental (46%) and remote sensing data (54%). From 

remote sensing data, both spectral (Landsat TM band and indices) and temporal 

data (MODIS products) were selected. The high number of variables selected is 

explained by the large spatial distribution of this vegetation type (Scolforo et al. 

2015). 

 The AGB estimates from Savannas-Forest transitions using stratified 

models are more accurate than the non-stratified one, since the relationship 

among AGB and the variables are peculiar to each vegetation type. Seasonal 

vegetation types (i.e. deciduous forest) are associated with the temporal 

characteristics of remote sensing images, requiring high temporal image 

resolution (~montlhy) instead of medium spatial image resolution (~30 m). On 

the contrary, non-seasonal vegetation types (i.e. rain forest) require medium 

spatial resolution instead of high temporal image resolution. Those variables that 

are widely spatial distributed require a higher number of variables and the 

combination not only of high temporal and medium spatial resolutions, but also 

the inclusion of spatio-environmental variables. 

 

Conclusions 

 Considering that Savanna, Atlantic forest and Semi-arid woodland 

biome  are large and heterogeneous in Minas Geraus state, Brazil, our study 

contributes to the understanding of the relationship between spatio-

environmental/remote sensing data and aboveground biomass (AGB) 

distribution. The stratification of data into vegetation types not only improved 

the accuracy of AGB estimative, but also allowed random forest regression to 

select the lowest number of variables that offer the best predictive model 

performance to AGB mapping. The improvement in AGB estimates is driven by 

the spatial distribution and seasonality effects of each vegetation type, and it is 
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achieved by stratifying the models which minimize the Savanna-Forest 

transition heterogeneity. 

 The refining map and the understanding of how the variables properties 

are associated with the AGB enable researches to improve the roughly estimates 

of greenhouse gas emission and also helps the selection of appropriate variables 

that best model the aboveground biomass in Savanna-Forest transition areas. 
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