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RESUMO GERAL 

 

A caracterização do solo e de plantas tem sido muito beneficiada pelo uso de sensores portáteis. 

Esta tese de doutorado empregou dois sensores: equipamento portátil de fluorescência de raios 

X (pXRF) e NixTM Pro Color Sensor para caracterização de solos e plantas. O pXRF pode ser 

considerado um dos avanços mais importantes na análise de solos e plantas em todo o mundo. 

Já o NixTM Pro é um sensor de bolso com conexão para smartphones via Bluetooth lançado 

recentemente no mercado que permite obter parâmetros de cor em diferentes sistemas (e.g., 

RGB, CMYK, CIELab) de qualquer superfície sólida. Para avaliar o desempenho desses 

sensores, este trabalho foi dividido em duas partes distintas: Solo e Planta. Na seção Solo, o 

pXRF foi empregado para obter a composição elementar total de solos de Veredas. Os 

resultados obtidos com pXRF foram comparados aos obtidos pelo método de digestão ácida. 

Na seção Planta, o pXRF foi usado para analisar mais de 600 amostras de folhas secas e moídas 

de diferentes culturas brasileiras. Os resultados foram correlacionados com o método 

convencional para análise foliar. Por fim, foi verificada a sensibilidade do NixTM Pro Color 

Sensor para obter a cor de folhas intactas de plantas. Para isso, um atributo correlacionado à cor 

de folhas de plantas (índice SPAD) foi utilizado como variável dependente. O pXRF revelou 

grande potencial para caracterização elementar de solos de Veredas. Vários elementos foram 

determinados com sucesso via pXRF em condições de laboratório. Outras investigações em 

campo podem ser grandemente beneficiadas pelo pXRF, contribuindo para o inventário ainda 

escasso dos solos de Veredas do Cerrado. Para análise foliar, o pXRF revelou ser um método 

alternativo e ambientalmente amigável para determinar macro- e micronutrientes em materiais 

vegetais secos e moídos. O NixTM Pro Color Sensor revelou-se sensível e como uma forma 

eficaz para determinação da cor de folhas de plantas. A partir deste estudo piloto, várias outras 

aplicações e calibrações podem ser realizadas para diferentes espécies de plantas e condições 

ambientais em todo o mundo, por exemplo, para estimar o conteúdo real de clorofila, N e Mg, 

e muitos fatores que influenciam o estado nutricional das plantas, baseado exclusivamente em 

parâmetros de cor obtidos com o sensor  NixTM Pro. 

 

Palavras-chave: Sensores inteligentes. Química verde. pXRF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GENERAL ABSTRACT 

 

The characterization of soil and plants has been greatly benefited by the use of portable and in-

field sensors. This doctoral thesis employed two sensors: portable X-ray fluorescence 

spectrometry (pXRF) and Nix Pro Color Sensor for soil and plant characterization. The pXRF 

can be considered one of the most important advances for soil and plant analysis worldwide. 

Nix Pro is a pocket-sized sensor with smartphone connection via Bluetooth recently launched 

in the market that allows to obtain color parameters in different systems (RGB, CMYK, 

CIELab) of any solid surface. To assess the performance of the above-mentioned sensors, this 

work was split into two distinct parts: Soil and Plant. In the Soil section, pXRF was employed 

to obtain the total elemental composition of wetland soils from Brazilian Savannah (“Veredas”). 

The pXRF results were compared to those obtained after wet digestion method. In the Plant 

section, pXRF was used to analyse more than 600 samples from different Brazilian crops. Also, 

the pXRF results were correlated to the conventional and standard method for foliar analysis. 

Finally, the sensibility of the Nix Pro Color Sensor to measure the greenness of intact plant 

leaves was verified. For that, a color-dependent parameter (SPAD index) was used as dependent 

variable. The pXRF revealed great potential for characterization of Cerrado wetland soils. 

Several elements were successfully determined via pXRF under lab conditions. Further in-field 

investigations may be greatly benefited by pXRF contributing to still scarce inventory of 

Cerrado wetland soils. For plant analysis, pXRF revealed to be an alternative environmental-

friendly method to determine macro- and micronutrients in dried and ground plant materials. 

The Nix Pro Color Sensor revealed to be sensible and an effective way to determine the color 

of intact plant leaves. From this pilot study, several other applications and calibrations can be 

performed for different plant species and environmental conditions worldwide, for example, to 

estimate the real chlorophyll content, N and Mg contents, and many factors influencing the 

nutritional status of plants, based exclusively on color parameters from NixTM Pro color sensor. 

 

Keywords: Smart sensor. Green chemistry. pXRF.
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FIRST PART 

 

GENERAL INTRODUCTION 

 

The characterization of earth materials samples has been greatly benefited by the use of 

proximal sensors (Weindorf et al., 2014; Oyedotun, 2018). In Soil Science, several sensors have 

contributed to the advance of many subareas (e.g., Pedology, Physics, Chemistry, Mineralogy, 

and Soil Fertility). Proximal soil sensing can be defined as all technologies that use sensors 

close to or in direct contact to the soil in order to measure some property (Adamchuk et al., 

2017). The main advantages of proximal sensing compared with laboratory-based methods 

include time and cost savings, non-destructive analysis and environmentally-friendly methods 

(Viscarra Rossel et al., 2011; Lima et al., 2019; Mancini et al., 2019; Tavares et al., 2019; Silva 

et al., 2020). Also, substantial data can be easily obtained via proximal sensors for modelling 

purposes (Viscarra Rossel et al., 2010), contributing to precision agriculture and smart farming 

(Molin et al., 2020; Bolfe et al., 2020). Currently, there are several sensors with different 

principles and technology to assess many soil properties (Viscarra Rossel et al., 2010; Viscarra 

Rossel et al., 2011). 

 This doctoral dissertation employed the portable X-ray fluorescence spectrometry 

(pXRF) and the NixTM Pro for soil and plant characterization. Over the last ten years, pXRF 

can be considered one of the most important advances for soil and plant characterization 

worldwide (Weindorf et al., 2014; Ribeiro et al., 2017; Silva et al., 2021). In Brazil, an 

expressive increase of pXRF applications for characterization of tropical soils occurred over 

the last five years (Ribeiro et al., 2017; Silva et al., 2021). There is a great potential to analyze 

plant material via pXRF (McLaren et al., 2012; Reidinger et al., 2012; Guerra et al., 2018; 

Kalcsits et al., 2016; McGladdery et al., 2018) Recently, a pocket-sized color sensor known as 

Nix Pro (www.nixsensor.com) was launched in the market. Small, light and with Bluetooth 

connectivity to smartphones via Android and iOS operating systems, this sensor is able to 

measure instantaneously the color in different systems (CMYK, RGB, CIELab) of any solid 

surface. It has been successfully applied in Soil Science, for example, replacing the traditional 

Munsell Color Chart (Stiglitz et al., 2016). In Plant Science, it has not been used yet. Part one 

presents a brief overview of portable X-ray fluorescence spectrometry and Nix Pro Color 

Sensor.  

 In order to contribute to pXRF applications and methodology in tropical conditions, 

article 1 brings the characterization of wetland soils from Brazilian Savannah (“Veredas”) via 

http://www.nixsensor.com/
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pXRF. This work compares pXRF results with wet digestion methods. In chapter 4, a 

comprehensive assessment of the elemental composition (macro- and micronutrients) of dried 

and ground plant material via pXRF was performed. More than 600 samples across Brazil were 

used. Finally, article 3 for the first time assessed the performance and sensibility of the Nix 

Pro Color Sensor to measure the greenness of leaves from different crops. A color-dependent 

parameter (SPAD index) was used as dependent variable. 

 Two papers from this doctoral dissertation have been published and another one is 

currently under review: 

 

Article 1 - Comparison of portable X-ray fluorescence spectrometry and laboratory-based 

methods to assess the soil elemental composition: Applications for wetland soils 

Journal: Environmental Technology & Innovation 

JCR: 5.263 

DOI: 10.1016/j.eti.2020.100826  

 

Article 2 - Foliar Elemental Analysis of Brazilian Crops via Portable X-ray Fluorescence 

Spectrometry 

Journal: Sensors 

JCR: 3.576   

DOI: 10.3390/s20092509 

 

Article 3 - Pocket-sized sensor to assess the color of plant leaves  

Submitted to Journal of Plant Physiology 

JCR: 3.549  
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BRIEF HISTORICAL AND DESCRIPTION OF X-RAY FLUORESCENCE 

SPECTROMETRY AND NIX PRO COLOR SENSOR 

 

X-ray fluorescence spectrometry 

 

X-ray fluorescence spectrometry (XRF) is an analytical technique based on the 

fluorescence emitted from a sample (e.g., soil, rocks, metal alloys, plant, sediments, and fossils) 

when atoms are struck with a primary X-ray source (Weindorf et al., 2014). When that occurs, 

a vacancy in the innermost layers (K or L shell) of the electrosphere is created (Jenkins, 2006; 

Weindorf et al., 2014).  To fill this vacancy, outer shell electrons move towards the inner 

orbitals (L to K or M to K shell), a process that emits energy (X-ray photons) equal to the energy 

difference between the two orbitals (Kalnicky and Singhvi, 2001). Therefore, since the 

fluorescent energy is typically element specific, it allows elemental identification and 

quantification (Weindorf et al., 2014). 

The first X-ray fluorescence spectrometer was a floor-standing research equipment built 

in 1950 (Glanzman and Closs, 2007). Only in 1959 the early XRF application was described, 

when G. Roger Webber reported a geochemical prospecting in sediment samples (Webber, 

1959; Glanzman and Closs, 2007). Portable X-ray fluorescence spectrometers (pXRF) in turn 

were developed only in 1965 (Bowie, Darnley and Rhodes, 1965) being commercially available 

in 1979 for mining applications. By this time, elemental identification was performed one at a 

time and the instrument weighted about 20 pounds (Glanzman and Closs, 2007). Latter, in 

1990’s with the X-MET 880 (Outokumpu Electronics and Columbia Scientific Instruments) 

and the SPECTRACE 9000 (TN Technologies) spectrometers, pXRF instruments gain 

popularity and became purchase and rental available (Glanzman and Closs, 2007). At that time, 

pXRF already provided near real-time multi-elemental analysis (Cr, Mn, Fe, Ni, Cu, Zn, As, 

Se, Pb, Cd, and Sn) and could be hand-held operated (Bernick and Campagna, 1995). 

Furthermore, it was around the 1980s that the first in situ analyzes of the chemical composition 

of the planet Mars were obtained, by miniaturized X-ray fluorescence spectrometers on rovers 

(Clark et al., 1982; Rieder et al., 1997; Gellert et al., 2015). A complete historical overview of 

pXRF usage can be found in Weindorf et al. (2014) and Shackley (2010). 

Since then, significant and constant improvements both in the physical structure of the 

device and in data processing have led to the development of the models in use today (Tracer 

5, Bruker; Niton, Thermo Fisher; Vanta Series, Olympus Corporation). These sensors are able 

to simultaneously measure a wide range of elements with reduced limit of detection, high 
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accuracy, no sample preparation requirements, onsite, and so on (Weindorf et al., 2014; Ribeiro 

et al., 2017). 

As mentioned, the first pXRF applications have focused on mining prospecting (Bowie, 

1968).  However, beyond this use (Durance et al., 2014; Gazley et al., 2011; Lemiere et al., 

2018) pXRF fits for a broader range of scientific applications, such as: forensic science 

(Trombka et al., 2002; Schweitzer et al., 2005; Appoloni and Melquiades, 2014; Woods et al., 

2014; Shutic et al., 2017), archaeology/paleontology/anthropology research (Forster et al., 

2011; Perrone et al., 2014; Zimmerman et al., 2015; Lubos et al., 2016; Fanti et al., 2018), 

medicine (Khuder et al., 2007; Khuder et al., 2012), environmental (Rouillon and Taylor, 2016; 

Al Maliki et al., 2017; Urritia-Goyes et al., 2018;  Ribeiro et al., 2019), pedological (Stockmann 

et al., 2016; Mancini et al., 2019; Silva et al., 2019; Sun et al., 2020), agronomic (Sharma et al., 

2015; Rawal et al., 2019; Lima et al., 2019; Andrade et al., 2020; Teixeira et al., 2020) and 

many others.  

In fact, pXRF is already a standard method for soil and sediment analyses (USEPA, 

2007; Weindorf and Chakraborty, 2016). However, despite its great potential for several 

research areas (West et al., 2011), its applicability for analysis of plant material is still scarce 

(Marguí et al., 2009; McLaren et al., 2012; Reidinger et al., 2012; Guerra et al., 2018; 

McGladdery et al., 2018; Montanha et al., 2019; Bachiega et al., 2019; Sapkota et al., 2019), 

and the absence of a standardized method makes it difficult to compare the results. 

 

Nix Pro Color Sensor 

  

The NixTM Pro is a pocket-sized, portable and inexpensive color sensor controlled by 

smartphone through a bluetooth connection (Nix Team, Ontario, Canada). It is a 

spectrophotometer that, in contact with any surface (e.g., walls, food, powders, water) produces 

scanning results in various color codes (RGB, CMYK, CIElab, HEX, etc.) (Nix Team, Canada). 

The equipment has an internal LED light source that is activated at the time of the measurement. 

Then, the equipment captures the reflected color and translates it into color codes.  

In the visible spectrum (380 - 750 nm), color can mainly be distinguished in the 

following hues: indigo, violet, blue, green, yellow, orange and red. However, human color 

perception can substantially vary from person to person, within a single group of people, and 

among different groups of people (Webster and Webster, 2002). The Nix Pro in turn, unlike 

human eyes, can quantitatively describe color, avoiding the subjectivity of measurement.  
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Soil color is basically developed by a mixture of water content, organic matter, 

phyllosilicates and oxides. It is such an important attribute that is used as a key attribute for soil 

classification (Santos et al., 2018). Traditionally, soil color has been qualitatively determined 

using the Munsell chart.  

Plant leaves are another kind of matrix that changes in color, which is of great relevance 

for soil fertility and crop management. Foliar color and nutritional status are directly related 

(Yao and Lou, 2012; Barbedo, 2019), and the chlorophyll content has a key role on it (Singh et 

al., 2002). Thus, foliar color can be used to estimate other related properties, such as nutritional 

status (Pasuquin et al., 2012; Prilianti et al., 2014), senescence, diseases (Singh et al., 2020), 

water content (Ge et al., 2016), etc. Additionally, just like soil color, foliar color has been 

qualitatively determined by a leaf color chart (LCC) (Singh et al., 2002; Prilianti et al., 2014 ), 

such as the Munsell Plant Tissue Color Chart (Raese et al., 2007; Oliveira; Santana, 2020) and 

the Globe Plant Color Chart (Thompson et al., 2013). 

The Nix ProTM was not specifically developed for color measurement of soil or plants, 

but it seems to be extremely promising for that (Stiglitz et al., 2016; Mukhopadhyay et al., 2020; 

Raeesi et al., 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 



16 

 

 

 

REFERENCES 

 

AL MALIKI, A.; AL-LAMI, A.K.; HUSSAIN, H.M.; AL-ANSARI, N. Comparison between 

inductively coupled plasma and X-ray fluorescence performance for Pb analysis in 

environmental soil samples. Environmental Earth Sciences, v. 76, p. 1–7, 2017.  

http://dx.doi.org/10.1007/s12665-017-6753-z. 

 

ANDRADE, R.; SILVA, S.H.G.; WEINDORF, D.C.; CHAKRABORTY, S.; FARIA, W.M.; 

MESQUITA, L.F.; GUILHERME, L.R.G.; CURI, N. Assessing models for prediction of 

some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in 

Brazilian Coastal Plains. Geoderma, v. 357, n. 113957, 2020.  

https://doi.org/10.1016/j.geoderma.2019.113957 

 

APPOLONI, C.R.; MELQUIADES, F.L. Portable XRF and principal component analysis for 

bill characterization in forensic science. Applied Radiation and Isotopes, v. 85, p. 92–95, 

2014. https://doi.org/10.1016/j.apradiso.2013.12.004 

 

BACHIEGA, P.; DE ALMEIDA, E.; SALGADO, J.M.; ARRUDA, M.A.Z.; LEHMANN, 

E.L.; MORZELLE, M.C.; DE CARVALHO, H.W.P. Benchtop and Handheld Energy-

Dispersive X-Ray Fluorescence (EDXRF) as Alternative for Selenium Concentration 

Measurement in Biofortified Broccoli Seedling. Food Analytical Methods, v. 12, p. 1520–

1527, 2019.  https://doi.org/10.1007/s12161-019-01489-5 

 

BARBEDO, J.G.A. Detection of nutrition deficiencies in plants using proximal images and 

machine learning: A review. Computers and Electronics in Agriculture, v. 162, p. 482–

492, 2019. https://doi.org/10.1016/j.compag.2019.04.035 

 

BERNICK, M.B.; CAMPAGNA, P.R. Application of field-portable X-ray fluorescence 

spectrometers for field-screening air monitoring filters for metals. Journal of Hazardous 

Materials, p. 91–99, 1995 

 

BOWIE, S.H.U.; DARNLEY, A.G.; RHODES, J.R. Portable Radioisotope X-Ray 

Fluorescence Analyzer: Trans. Instn. Mining and Metall., v. 74, p. 361-379 and p. 557-563, 

1965. 

 

 BOWIE, S.H.U. Portable X-Ray Fluorescence analyzers in the Mining Industry. Mining 

Magazine, v. 118, n. 4, p. 230-239, 1968. 

 

CLARK, B..C.; BAIRD, A.K.; WELDON, R.J.; TSUSAKI, D.M.; SCHNABEL, L.; 

CANDELARIA, M.P. Chemical composition of Martian fines. Journal of Geophysical 

Research: Solid Earth, v. 87, p. 10059-10067, 1982. 

https://doi.org/10.1029/JB087iB12p10059 

 
DURANCE, P.; JOWITT, S.M.; BUSH, K. An assessment of portable X-ray fluorescence 

spectroscopy in mineral exploration , Kurnalpi Terrane , Eastern Goldfields Superterrane, 

Western Australia. Applied Earth Science, v. 123, p. 150–163, 2014.  

https://doi.org/10.1179/1743275814Y.0000000052 

 

FANTI, F.; BELL, P.R.; TIGHE, M.; MILAN, L.A.; DINELLI, E. Geochemical 

fingerprinting as a tool for repatriating poached dinosaur fossils in Mongolia: A case study for 

https://doi.org/10.1016/j.geoderma.2019.113957
https://doi.org/10.1016/j.apradiso.2013.12.004
https://doi.org/10.1007/s12161-019-01489-5
https://doi.org/10.1016/j.compag.2019.04.035
https://doi.org/10.1029/JB087iB12p10059
https://doi.org/10.1179/1743275814Y.0000000052


17 

 

 

 

the Nemegt Locality, Gobi Desert. Palaeogeography, Palaeoclimatology, Palaeoecology, v. 

494, p. 51–64, 2018.  https://doi.org/10.1016/j.palaeo.2017.10.032 

 

FORSTER, N.; GRAVE, P.; VICKERY, N.; KEALHOFER, L. Non-destructive analysis 

using PXRF: Methodology and application to archaeological ceramics. X-Ray Spectrometry, 

v. 40, p. 389–398, 2011. https://doi.org/10.1002/xrs.1360 

 

GAZLEY, M.F.; VRY, J.K.; DU PLESSIS, E.; HANDLER, M.R. Application of portable X-

ray fluorescence analyses to metabasalt stratigraphy , Plutonic Gold Mine , Western Australia. 

Journal of Geochemical Exploration, v. 110, p. 74–80, 2011. 

https://doi.org/10.1016/j.gexplo.2011.03.002 

 

GE, Y.; BAI, G.; STOERGER, V.; SCHNABLE, J.C. Temporal dynamics of maize plant 

growth, water use, and leaf water content using automated high throughput RGB and 

hyperspectral imaging. Computers and Electronics in Agriculture, v. 127, p. 625–632, 

2016.  https://doi.org/10.1016/j.compag.2016.07.028 

 

GELLERT, R.; CLARK, B.C.; MSL, MER SCIENCE TEAMS. In Situ Compositional 

Measurements of Rocks and Soils with the Alpha Particle X-ray Spectrometer on NASA’s 

Mars Rovers. Elements, v. 11, p. 39-44, 2015. https://doi.org/10.2113/gselements.11.1.39 

 

GLANZMAN, R.K.; CLOSS, L.G. Field Portable X-Ray Fluorescence Geochemical Analysis 

– Its Contribution to Onsite Real-time Project Evaluation, in: Milkereit, B. (Ed.), Proceedings 

of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 

Advances in Prospect-Scale Geochemical Methods. Toronto, Canada, p. 291–301, 2007. 

 

GUERRA, M.B.B.; ADAME, A.; DE ALMEIDA, E.; BRASIL, M.A.S.; SCHAEFER, 

C.E.G.R.; KRUG, F.J. In situ determination of k, ca, s and si in fresh sugar cane leaves by 

handheld energy dispersive X-Ray fluorescence spectrometry. Journal of the Brazilian 

Chemical Society, v. 29, p. 1086–1093, 2018. https://doi.org/10.21577/0103-5053.20170229 

 

JENKINS, R. X-ray Techniques : Overview, Encyclopedia of Analytical Chemistry. John 

Wiley & Sons, Chichester, UK. 2006. https://doi.org/10.1002/9780470027318.a6801 

 

KALNICKY, D.J.; SINGHVI, R. Field portable XRF analysis of environmental samples. 

Journal of Hazardous Materials, v. 83, p. 93–122, 2001. https://doi.org/10.1016/S0304-

3894(00)00330-7 

 

KHUDER, A.; BAKIR, M.A.; KARJOU, J.; SAWAN, M.K. XRF and TXRF techniques for 

multi-element determination of trace elements in whole blood and human hair samples. 

Journal of Radioanalytical and Nuclear Chemistry, v. 273, p. 435–442, 2007. 

https://doi.org/10.1007/s10967-007-6869-9 

 

KHUDER, A.; BAKIR, M.A.; SOLAIMAN, A.; ISSA, H.; HABIL, K.; MOHAMMAD, A. 

Major, minor, and trace elements in whole blood of patients with different leukemia patterns. 

Nukleonika, v. 57, p. 389–399, 2012. 

 

LEMIÈRE, B. A review of pXRF (Field Portable X-ray Fluorescence) Applications for 

Applied Geochemistry. Journal of Geochemical Exploration, v. 188, p. 350–363, 2018.  

https://doi.org/10.1016/j.gexplo.2018.02.006 

https://doi.org/10.1016/j.palaeo.2017.10.032
https://doi.org/10.1002/xrs.1360
https://doi.org/10.1016/j.gexplo.2011.03.002
https://doi.org/10.1016/j.compag.2016.07.028
https://doi.org/10.21577/0103-5053.20170229
https://doi.org/10.1002/9780470027318.a6801
https://doi.org/10.1016/S0304-3894(00)00330-7
https://doi.org/10.1016/S0304-3894(00)00330-7
https://doi.org/10.1007/s10967-007-6869-9
https://doi.org/10.1016/j.gexplo.2018.02.006


18 

 

 

 

 

LIMA, T.M.; WEINDORF, D.C.; CURI, N.; GUILHERME, L.R.G.; LANA, R.M.Q.; 

RIBEIRO, B.T. Elemental analysis of Cerrado agricultural soils via portable X-ray 

fluorescence spectrometry: Inferences for soil fertility assessment. Geoderma, v. 353, p. 264–

272, 2019. https://doi.org/10.1016/j.geoderma.2019.06.045 

 

LUBOS, C.; DREIBRODT, S.; BAHR, A. Analysing spatio-temporal patterns of 

archaeological soils and sediments by comparing pXRF and different ICP-OES extraction 

methods. Journal of Archaeological Science: Reports, v. 9, p. 44–53, 2016. 

https://doi.org/10.1016/j.jasrep.2016.06.037 

 

MANCINI, M.; WEINDORF, D.C.; CHAKRABORTY, S.; SILVA, S.H.G.; DOS SANTOS 

TEIXEIRA, A.F.; GUILHERME, L.R.G.; CURI, N. Tracing tropical soil parent material 

analysis via portable X-ray fluorescence (pXRF) spectrometry in Brazilian Cerrado. 

Geoderma, v. 337, p. 718–728, 2019. doi:10.1016/j.geoderma.2018.10.026. 

 

MARGUÍ, E.; QUERALT, I.; HIDALGO, M. Application of X-ray fluorescence 

spectrometry to determination and quantitation of metals in vegetal material. TrAC - Trends 

in Analytical Chemistry, v. 28, p. 362–372, 2009. https://doi.org/10.1016/j.trac.2008.11.011 

 

MCGLADDERY, C.; WEINDORF, D.C.; CHAKRABORTY, S.; LI, B.; PAULETTE, L.; 

PODAR, D.; PEARSON, D.; KUSI, N.Y.O.; DUDA, B. Elemental assessment of vegetation 

via portable X-ray fluorescence (PXRF) spectrometry. Journal of Environmental 

Management, v. 210, p. 210–225, 2018. https://doi.org/10.1016/j.jenvman.2018.01.003 

 

MCLAREN, T.I.; GUPPY, C.N.; TIGHE, M.K. A Rapid and Nondestructive Plant Nutrient 

Analysis using Portable X-Ray Fluorescence. Soil Science Society of America Journal, v. 

76, n. 1446, 2012. https://doi.org/10.2136/sssaj2011.0355 

 

MONTANHA, G.S.; RODRIGUES, E.S.; MARQUES, J.P.R.; ALMEIDA, E.; REIS, A.R.; 

CARVALHO, H.W.P. X-ray fluorescence spectroscopy (XRF) applied to plant science: 

challenges towards in vivo analysis of plants. Metallomics, v. 12, p. 183-192, 2019. 

https://doi.org/10.1039/c9mt00237e 

 

MUKHOPADHYAY, S.; CHAKRABORTY, S.; BHADORIA, P.B.S.; LI, B.; WEINDORF, 

D.C. Assessment of heavy metal and soil organic carbon by portable X-ray fluorescence 

spectrometry and NixProTM sensor in landfill soils of India. Geoderma Regional, v. 20, n.  

e00249, 2020. https://doi.org/10.1016/j.geodrs.2019.e00249 

 

OLIVEIRA, L.F.R.; SANTANA, R.C. Exploratory analysis of nutrient concentrations in 

Eucalyptus leaf color patterns. Advances in Forestry Science, v. 7, p. 973-979, 2020. 

 

PASUQUIN, J.M.; SAENONG, S.; TAN, P.S.; WITT, C.; FISHER, M.J. Evaluating N 

management strategies for hybrid maize in Southeast Asia. Field Crops Research, v. 134, p. 

153–157, 2012. https://doi.org/10.1016/j.fcr.2012.06.004 

 

PERRONE, A.; FINLAYSON, J.E.; BARTELINK, E.J.; DALTON, K.D. Application of 

Portable X-ray Fluorescence (XRF) for Sorting Commingled Human Remains, in: Adams, 

B.J., Byrd, J.E. (Eds.), Commingled Human Remains: Methods in Recovery, Analysis, 

https://doi.org/10.1016/j.geoderma.2019.06.045
https://doi.org/10.1016/j.jasrep.2016.06.037
https://doi.org/10.1016/j.trac.2008.11.011
https://doi.org/10.1016/j.jenvman.2018.01.003
https://doi.org/10.2136/sssaj2011.0355
https://doi.org/10.1039/c9mt00237e
https://doi.org/10.1016/j.geodrs.2019.e00249
https://doi.org/10.1016/j.fcr.2012.06.004


19 

 

 

 

and Identification. Elsevier Inc., p. 145–166. 2014.  https://doi.org/10.1016/B978-0-12-

405889-7.00007-1 

 

PRILIANTI, K.R.; YUWONO, S.P.; ADHIWIBAWA, M.A.S.; PRIHASTYANTI, M.N.P.; 

LIMANTARA, L.; BROTOSUDARMO, T.H.P. Automatic leaf color level determination for 

need based fertilizer using fuzzy logic on mobile application: A model for soybean leaves, in: 

6th International Conference on Information Technology and Electrical Engineering 

(ICITEE). Institute of Electrical and Eletronics Engineers, Yogyakarta, Indonesia, p. 1–6. 

2014. https://doi.org/10.1109/ICITEED.2014.7007895 

 

RAEESI, M.; ZOLFAGHARI, A.A.; YAZDANI, M.R.; GORJI, M.; SABETIZADE, M. 

Prediction of soil organic matter using an inexpensive colour sensor in arid and semiarid areas 

of Iran. Soil Research, v. 57, p. 276–286, 2019. https://doi.org/10.1071/SR18323 

 

RAESE, J.T.; DRAKE, S.R.; CURRY, E.A. Nitrogen Fertilizer Influences Fruit Quality, Soil 

Nutrients and Cover Crops, Leaf Color and Nitrogen Content, Biennial Bearing and Cold 

Hardiness of ‘Golden Delicious’, Journal of Plant Nutrition, v. 30, p. 1585-1604, 2007. 

https://doi.org/10.1080/01904160701615483 

 

RAWAL, A.; CHAKRABORTY, S.; LI, B.; LEWIS, K.; GODOY, M.; PAULETTE, L.; 

WEINDORF, D.C. Determination of base saturation percentage in agricultural soils via 

portable X-ray fluorescence spectrometer. Geoderma, v. 338, p. 375–382, 2019. 

doi:10.1016/j.geoderma.2018.12.032. 

 

RIBEIRO, B.T.; SILVA, S.H.G.; SILVA, E.A.; GUILHERME, L.R.G. Aplicações da 

fluorescência de raios-X portátil (pXRF) na Ciência do Solo tropical. Ciencia e 

Agrotecnologia, v. 41, p. 245–254, 2017. https://doi.org/10.1590/1413-70542017413000117 

 

RIBEIRO, B.T.; NASCIMENTO, D.C.; CURI, N.; GUILHERME, L.R.G.; COSTA, E.T.S.; 

LOPES, G.; CARNEIRO, J.P. Assessment of trace element contents in soils and water from 

cerrado wetlands, triângulo mineiro region. Revista Brasileira de Ciencia do Solo, v. 43, p. 

1–17, 2019. https://doi.org/10.1590/18069657rbcs20180059 

 

RIEDER, R.; ECONOMOU, T.; WANKE, H.; TURKEVICH, A.; CRISP, J.; BRUCKNER, 

J.; DREIBUS, G.; MCSWEEN JR., H.Y. The Chemical Composition of Martian Soil and 

Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer: Preliminary Results from 

the X-ray Mode. Science, v. 278, p. 1771-1774, 1997. 

https://doi.org/10.1126/science.278.5344.1771 

 

REIDINGER, S.; RAMSEY, M.H.; HARTLEY, S.E. Rapid and accurate analyses of silicon 

and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytologist, 

v. 195, p. 699–706, 2012. https://doi.org/10.1111/j.1469-8137.2012.04179.x 

 

ROUILLON, M.; TAYLOR, M.P. Can field portable X-ray fluorescence (pXRF) produce 

high quality data for application in environmental contamination research? Environmental 

Pollution, v. 214, p. 255–264, 2016. doi:10.1016/j.envpol.2016.03.055. 

 

SANTOS, H.G.; JACOMINE, P.K.T.; ANJOS, L.H.C.; OLIVEIRA, V.A.; LUMBRERAS, 

J.F.; COELHO, M.R.; ALMEIDA, J.A.; ARAÚJO FILHO, J.C.; OLIVEIRA, J.B.; CUNHA, 

T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed. 2018. Embrapa, Brasília, DF. 

https://doi.org/10.1016/B978-0-12-405889-7.00007-1
https://doi.org/10.1016/B978-0-12-405889-7.00007-1
https://doi.org/10.1109/ICITEED.2014.7007895
https://doi.org/10.1071/SR18323
https://doi.org/10.1590/1413-70542017413000117
https://doi.org/10.1590/18069657rbcs20180059
https://doi.org/10.1111/j.1469-8137.2012.04179.x


20 

 

 

 

SAPKOTA, Y.; MCDONALD, L.M.; GRIGGS, T.C.; BASDEN, T.J.; DRAKE, B.L. Portable 

X-Ray fluorescence spectroscopy for rapid and cost-effective determination of elemental 

composition of ground forage. Frontiers in Plant Science, v. 10, p. 1–9, 2019. 

https://doi.org/10.3389/fpls.2019.00317 

 

SCHWEITZER, J.S.; TROMBKA, J.I.; FLOYD, S.; SELAVKA, C.; ZEOSKY, G.; GAHN, 

N.; MCCLANAHAN, T.; BURBINE, T. Portable generator-based XRF instrument for non-

destructive analysis at crime scenes. Nuclear Instruments and Methods in Physics 

Research B, v. 241, p. 816–819, 2005. https://doi.org/10.1016/j.nimb.2005.07.137 

 

SHACKLEY, M.S. An Introduction to X-Ray Fluorescence ( XRF ) Analysis in Archaeology, 

in: Shackley, M.S. (Ed.), X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. 

Springer, New York, NY, p. 7–44. 2011. https://doi.org/10.1007/978-1-4419-6886-9_2 

 

SHARMA, A.; WEINDORF, D.C.; WANG, D.D.; CHAKRABORTY, S. Characterizing soils 

via portable X-ray fluorescence spectrometer: 4. Cation exchange capacity (CEC). 

Geoderma, v. 239, p. 130–134, 2015. https://doi.org/10.1016/j.geoderma.2014.10.001 

 

SHUTIC, S.; CHAKRABORTY, S.; LI, B.; WEINDORF, D.C.; SPERRY, K.; 

CASADONTE, D. Forensic identification of pharmaceuticals via portable X-ray fluorescence 

and diffuse reflectance spectroscopy. Forensic Science International, v. 279, p. 22–32, 

2017. https://doi.org/10.1016/j.forsciint.2017.08.008 

 

SILVA, E.A.; WEINDORF, D.C.; SILVA, S.H.G.; RIBEIRO, B.T.; POGGERE, G.C.; 

CARVALHO, T.; GONÇALVES, M.G.M.; GUILHERME, L.R.G.; CURI, N. Advances in 

Tropical Soil Characterization via Portable X-Ray Fluorescence Spectrometry. Pedosphere, 

v. 29, p. 468–482, 2019. https://doi.org/10.1016/S1002-0160(19)60815-5 

 

SINGH, B.; SINGH, Y.; LADHA, J.K.; BRONSON, K.F.; BALASUBRAMANIAN, V.; 

SINGH, J.; KHIND, C. Chlorophyll Meter - and leaf color chart-based nitrogen management 

for rice and wheat in Northwestern India. Agronomy Journal, v. 94, p. 821–829, 2002. 

 

SINGH, J.P.; PRADHAN, C.; DAS, S.C. Image Processing and Machine Learning 

Techniques to Detect and Classify Paddy Leaf Diseases: A Review, in: Swain, D., Pattnaik, 

P.K., Gupta, P.. (Eds.), Machine Learning and Information Processing. Springer Nature 

Singapore Pte Ltd., Singapore, p. 161–172. 2020. https://doi.org/10.1007/978-981-15-1884-

3_4 

 

STIGLITZ, R.; MIKHAILOVA, E.; POST, C.; SCHLAUTMAN, M.; SHARP, J. Evaluation 

of an inexpensive sensor to measure soil color. Computers and Electronics in Agriculture, 

v. 121, p. 141–148, 2016. https://doi.org/10.1016/j.compag.2015.11.014 

 

STOCKMANN, U.; CATTLE, S.R.; MINASNY, B.; MCBRATNEY, A.B. Utilizing portable 

X-ray fluorescence spectrometry for in-field investigation of pedogenesis. Catena, v. 139, p. 

220–231, 2016. https://doi.org/10.1016/j.catena.2016.01.007 

 

SUN, F.; BAKR, N.; DANG, T.; PHAM, V.; WEINDORF, D.C.; JIANG, Z.; LI, H.; WANG, 

Q. Geoderma Enhanced soil profile visualization using portable X-ray fluorescence ( PXRF) 

spectrometry. Geoderma, v. 358, n. 113997, 2020. 

https://doi.org/10.1016/j.geoderma.2019.113997 

https://doi.org/10.3389/fpls.2019.00317
https://doi.org/10.1016/j.nimb.2005.07.137
https://doi.org/10.1007/978-1-4419-6886-9_2
https://doi.org/10.1016/j.geoderma.2014.10.001
https://doi.org/10.1016/j.forsciint.2017.08.008
https://doi.org/10.1016/S1002-0160(19)60815-5
https://doi.org/10.1007/978-981-15-1884-3_4
https://doi.org/10.1007/978-981-15-1884-3_4
https://doi.org/10.1016/j.compag.2015.11.014
https://doi.org/10.1016/j.catena.2016.01.007
https://doi.org/10.1016/j.geoderma.2019.113997


21 

 

 

 

 

TEIXEIRA, A.F.S.; PELEGRINO, M.H.P.; FARIA, W.M.; SILVA, S.H.G.; GONÇALVES, 

M.G.M.; ACERBI JUNIOR, F.W.; GOMIDE, L.R.; PÁDUA JUNIOR, A.L.; SOUZA, I.A.; 

CHAKRABORTY, S. et al. Tropical soil pH and sorption complex prediction via portable X-

ray fluorescence spectrometry. Geoderma, v. 361, n. 114132, 2020. 

 

THOMPSON, J.A.; POLLIO,A.R.; TURK, P.J. Comparison of Munsell Soil Color Charts and 

the GLOBE Soil Color Book. Soil Science Society of America Journal, v. 77, p. 2089-2093, 

2013. https://doi.org/ 10.2136/sssaj2013.03.0117n 

 

TROMBKA, J.I.; SCHWEITZER, J.; SELAVKA, C.; DALE, M.; GAHN, N.; FLOYD, S.; 

MARIE, J.; HOBSON, M.; ZEOSKY, J.; MARTIN, K.; MCCLANNAHAN, T.; SOLOMON, 

P.; GOTTSCHANG, E. Crime scene investigations using portable, non-destructive space 

exploration technology. Forensic Science International, v. 129, p. 1–9, 2002. 

 

URRUTIA-GOYES, R.; ARGYRAKI, A.; ORNELAS-SOTO, N. Characterization of soil 

contamination by lead around a former battery factory by applying an analytical hybrid 

method. Environmental Monitoring and Assessment, v. 190, 2018. 

https://doi.org/10.1007/s10661-018-6820-2 

 

US EPA (2007) Method 6200: Field portable X-ray fluorescence spectrometry for 

determination of elemental concentrations in soil and sediment. 

https://www.epa.gov/sites/production/%0Afiles/2015-12/ documents/6200.pdf. 

 

WEBBER, G.R. Application of X-ray Spectrometric Analysis to Geochemical Prospecting: 

Economic Geology, v. 54, n. 5, p. 816-828, 1959. 

 

WEBSTER, M.A.; WEBSTER, S.M.; BHARADWAJ, S.; VERMA, R.; JAIKUMAR, J.; 

MADAN, G.; VAITHILINGHAM, E. Variations in normal color vision III Unique hues in 

Indian and United States observers. Journal of the Optical Society of America A,  v. 19, n. 

10, p. 1951-1962, 2002. https://doi.org/10.1364/josaa.19.001951 

 

WEINDORF, D.C.; BAKR, N.; ZHU, Y. Advances in portable X-ray fluorescence (PXRF) 

for environmental, pedological, and agronomic applications, in: Sparks, D.L. (Ed.), Advances 

in Agronomy. Elsevier, San Diego, CA, USA, p. 1–45, 2014. https://doi.org/10.1016/B978-0-

12-802139-2.00001-9 

 

WEINDORF, D.C.; CHAKRABORTY, S. Portable X-ray Fluorescence Spectrometry 

Analysis of Soils. Methods of Soil Analysis 1, 0. 2016. https://doi.org/10.2136/methods-

soil.2015.0033 

 

WEST, M.; ELLIS, A.T.; POTTS, P.J.; STRELI, C.; VANHOOF, C.; WEGRZYNEK, D.; 

WOBRAUSCHEK, P. Atomic spectrometry update-X-ray fluorescence spectrometry. 

Journal of Analytical Atomic Spectrometry, v. 26, n. 10, 1919–1963, 2011. 

https://doi.org/10.1039/c1ja90038b 

 

WOODS, B.; KIRKBRIDE, K.P.; LENNARD, C.; ROBERTSON, J. Soil examination for a 

forensic trace evidence laboratory – Part 2: Elemental analysis. Forensic Science 

International, v. 245, p. 195–201, 2014. https://doi.org/10.1016/j.forsciint.2014.10.018 

 

https://doi.org/10.1007/s10661-018-6820-2
https://doi.org/10.1364/josaa.19.001951
https://doi.org/10.1016/B978-0-12-802139-2.00001-9
https://doi.org/10.1016/B978-0-12-802139-2.00001-9
https://doi.org/10.2136/methods-soil.2015.0033
https://doi.org/10.2136/methods-soil.2015.0033
https://doi.org/10.1039/c1ja90038b
https://doi.org/10.1016/j.forsciint.2014.10.018


22 

 

 

 

YAO, X.; LUO, W. Foliar image color features for rubber nitrogen deficiency status analysis. 

Advanced Materials Research, v. 488–489, p. 1674–1679, 2012. 

https://doi.org/10.4028/www.scientific.net/AMR.488-489.1674 

 

ZIMMERMAN, H.A.; SCHULTZ, J.J.; SIGMAN, M.E. Preliminary Validation of Handheld 

X-Ray Fluorescence Spectrometry : Distinguishing Osseous and Dental Tissue from Nonbone 

Material of Similar Chemical Composition. Journal of Forensic Sciences, v. 60, p. 382–391, 

2015. https://doi.org/10.1111/1556-4029.12690 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.4028/www.scientific.net/AMR.488-489.1674
https://doi.org/10.1111/1556-4029.12690


23 

 

 

 

SECOND PART – ARTICLES 

 

ARTICLE 1: COMPARISON OF PORTABLE X-RAY FLUORESCENCE 

SPECTROMETRY AND LABORATORY-BASED METHODS TO ASSESS THE 

SOIL ELEMENTAL COMPOSITION: APPLICATIONS FOR WETLAND SOILS 
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211A, 2911 15th Street, Lubbock, TX 79409-2122, United States of America 
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Abstract: The portable X-ray fluorescence spectrometry (pXRF) can be considered one of the 

most novelty for soil characterization. In tropical regions (e.g., Brazil), some studies have 

showed a consistent correlation between pXRF and laboratory-based methods. However, there 

is no work dedicated exclusively for hydromorphic soils (gley or organic-rich soils). This study 

aims to assess the total elemental composition reported by portable X-ray fluorescence (pXRF) 

spectrometry and to compare it to laboratory-based wet digestion method and wavelength 

dispersive X-ray (WDXRF) spectrometry. A collection of 144 hydromorphic soil samples from 

six wetlands located in the Cerrado biome (Savannah), Brazil, was used for this investigation. 

Soil samples were disaggregated and passed through a 150-μm nylon mesh and subjected to 

wet digestion (US EPA 3051a) followed by elemental determination via atomic absorption 

spectrometry (AAS). Subsamples of each ground soil were also directly analyzed via both 

pXRF and WDXRF. Linear regressions were performed to establish the relationship between 

methods. Several elements (Pb, Cu, Zn, Cr, Fe, Ti, Sr, and Y) determined via pXRF were 

successfully correlated to other methods (USEPA 3051a and WDXRF). Specially for Pb, a very 

strong correlation (R > 0.90) was observed between pXRF, WDXRF and US EPA 3051a 

methods. The pXRF revealed also to be a useful tool for characterization of hydromorphic soils 

and future studies should be conducted directly in the field to assess the elemental composition 

of Cerrado wetland soils. 

 

Keywords: XRF analysis. Soil chemistry. Proximal sensors. 
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Introduction 

 

Traditionally, the assessment of the total elemental composition of soil has been performed 

by wet digestion methods (e.g., US EPA 3051a, US EPA 3052) followed by the determination 

via atomic absorption spectrometry (AAS) or inductively coupled plasma optical emission 

spectrometry (ICP-OES), for instance. These methods are considered non-environmentally 

friendly and have been gradually replaced by fast and non-destructive methods such as portable 

X-ray fluorescence (pXRF) spectrometry (Weindorf et al., 2014; Ribeiro et al., 2017). 

Nowadays, the pXRF method can be considered one of the most important innovations in Soil 

Science (USEPA, 2007a; Soil Survey Staff, 2014; Weindorf et al., 2014; Weindorf and 

Chakraborty, 2016).  

The pXRF method has been applied worldwide for different purposes (e.g., agronomic, 

pedological, geological and environmental) (Weindorf et al., 2014). The pXRF reports the total 

elemental concentration and the results have been well correlated to those obtained via 

laboratory-based methods (Kilbride et al., 2006; Radu and Diamond, 2009; Hu et al., 2014; 

Rouillon and Taylor, 2016). Further, it facilitates in-field investigation of large areas and high 

sample throughput (Chakraborty et al., 2019; Mancini et al., 2019). Based on pXRF data and 

prediction models several soil properties have been successfully estimated (Zhu et al., 2011; 

Weindorf et al., 2012; Andrade et al., 2020a,b; Lima et al., 2019; Rawal et al., 2019). Others 

have used pXRF data visualization tools to augment traditional morphological profile 

description (Sun et al., 2020). 

In tropical regions (e.g., Brazil) some studies using pXRF method started few years ago 

(Ribeiro et al., 2017). Until now, the correlation between pXRF and conventional methods was 

assessed by a very few studies. For soils from Southern of Minas Gerais State, Brazil, a strong 

correlation between pXRF and wet digestion-ICP method was observed for Ca, Cu, Fe, Mn, Cr, 

Ni, and V (Silva et al., 2019). However, for others elements like Al, K, Ti, and Zr a poor 

correlation was obtained. These differences are related to the intrinsic characteristics of each 

method and the performance of wet digestion procedure which depends on soil properties. For 

Fe2O3, a very strong correlation between pXRF and laboratory-based methods has always been 

found (Santana et al., 2018; Silva et al., 2020). These studies were performed using always 

samples from non-hydromorphic soils. To date, there is no work which evaluated the pXRF 

performance exclusively for hydromorphic soils compared to laboratory-based methods. 
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In this work, an important wet ecosystem (wetlands) occurring in the Cerrado Biome 

(Brazilian Savannah) (Junk et al., 2014; Hu et al., 2017) was selected. In this environment, the 

total elemental composition and hazardous pollutants have scarcely been studied (Ramos et al., 

2006; Moraes and Horn, 2013; Rosolen et al., 2015a,b; Ribeiro et al., 2019). Also, the elemental 

assessment has always been performed via wet digestion method. This analysis is time 

consuming and non-environmentally friendly. The pXRF technology has been not applied on 

Cerrado wetland soils yet. It was hypothesized that the pXRF method may be a useful tool to 

improve the characterization of wetland soils. Thus, this work aimed to verify the pXRF 

performance compared to benchtop wavelength dispersive X-ray fluorescence spectrometry 

(WDXRF), and to correlate it to standard method employed in Brazil for soil metal assessment 

(US EPA 3051a). 

 

Material and methods 

 

Sampling site description 

 

Six representative wetlands (W1, W2, W3, W4, W5 and W6) were selected around 

Uberlândia city, Triângulo Mineiro region, Minas Gerais State, Brazil (Fig. 1). According to 

the Köppen classification, the climate is Aw and the historical annual average rainfall is 1472 

mm (Ribeiro et al., 2013). Most rainfall (86%) occurs during spring-summer, with 14% during 

fall-winter. Mean elevation is 819 m amsl (ranging from 745 to 892 m). The selected wetlands 

are located in two geomorphic-geologic units: the Chapada Plateau surface composed of clayey 

sediments, and the lower surface composed of sandstones of the Bauru Group (Nishiyama, 

1989; Ramos et al., 2006). 
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Fig. 1. Location of selected wetlands (W1, W2, W3, W4, W5, and W6) around Uberlândia city, 

Triângulo Mineiro region, Minas Gerais State, Brazil. 

 

In each wetland, three transects 50 m apart were established perpendicularly to the 

drainage line (Fig. 1). Each transect was considered as a field replicate and divided in four 

portions: P1, P2, P3, and P4 (bottom). P1 position is a transition between hydromorphic and 

non-hydromorphic soils. P2, P3, and P4 are located in the seasonally or permanently flooded 

area. Per Nascimento et al. (2018), the bottom portion and the subsurface (40–70 cm) layer of 

the middle portion (P2 and P3) remain flooded during the entire year. According to the Brazilian 

System of Soil Classification (Santos et al., 2018), Gleissolo Háplico occurs in the P2 position, 

and Gleissolo Melânico occurs in the P3 and P4 positions. Gleissolo Háplico and Gleissolo 

Melânico correspond to Entisols and Gleysols per US Soil Taxonomy and FAO, respectively. 

Composite soil samples were collected from 0–20 cm (organic-rich) and 40–70 cm depth (gley 

horizon) at the upper (P1 and P2), middle (P3), and bottom position (P4). Each composite soil 

sample was constituted by mixture of four single samples. The soil samples were collected 

using a stainless hand auger or by excavation of a soil pit (Fig. 2). Thus, in each wetland, 24 

soil samples were collected totalizing 144 samples (full dataset). The soil samples were air dried 

and ground to pass through a 2-mm sieve for further analysis. Coarse fragments (> 2 mm) were 

not found in all soil samples. 



27 

 

 

 

 

Fig. 2. Sampling details of soil samples from 0-20 cm layer (organic-rich) (a) and 40-70 cm layer (gley 

horizon) (b), and detail of the soil pit showing the typical occurrence of Gleysols in the studied Cerrado 

wetlands (Veredas). Source: Photos: Bruno T. Ribeiro. 

 

USEPA 3051a method 

 

A homogeneous portion of the soil samples passed through a 2 mm sieve was totally 

ground in an agate mortar and passed through a 150-μm nylon mesh sieve. Using 50-mL 

Teflon® vessels, 1.0 g of soil was weighed and combined with 10 ml of HNO3 (Sigma-

Aldrich®). Soil digestion was performed by microwave following the USEPA 3051a protocol 

(USEPA, 2007a). After digestion, samples were filtered using Whatmann No. 40 filter paper, 

a) b)

c)

0-20 cm layer 40-70 cm layer
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rinsing with 10 ml of ultrapure water. In the obtained extract, elemental composition was 

assessed via either graphite-furnace atomic absorption spectrometry (GFAAS) or flame atomic 

absorption spectrometer (FAAS). To verify the accuracy of the digestion procedure and the 

performance of the AAS equipment, blank samples and National Institute of Standards and 

Technology (NIST) Standard Reference Material® (SRM) 2710a (Montana I soil) were used. 

Recovery percentages (AAS determined/NIST certified) were as follows: Fe (95); Pb (92); Mn 

(80); Cu (117); Ni (78); Zn (98); As (110); and Cd (100). The US EPA 3051a method was 

referenced in this work as acid digestion (AD) method for further discussion. 

 

 pXRF analyses 

 

Portable X-ray fluorescence analyses were also performed on soil samples passed 

through a 150-μm nylon mesh sieve following the USEPA Method 6200 (USEPA, 2007b) and 

Weindorf and Chakraborty (2016). Samples were scanned using a Vanta series (Olympus, 

Waltham, MA, USA) pXRF. The equipment operates with Li ion batteries and contains a Rh 

X-ray tube (8–50 kV) as the primary X-ray excitation source. Instrument calibration was via 

316 stainless steel calibration alloy. The operational conditions were: Geochem mode and dwell 

time of 60 s (30 s per beam). Prolene® thin-film (Chemplex, Industries, INC) (63.5 mm 

diameter) was placed on the X-ray source and detector aperture (∼2 cm). After that, 

approximately 10 g of soil was massed over the circle film ensuring at least 10 mm thickness 

of sample prior to scanning. For quality assurance and control (QA/QC), NIST SRM 2711a was 

used. Recovery percentages (pXRF determined/NIST certified) were as follows: Si (95); Al 

(86); Fe (92); Ti (108); Cr (76); Mn (94); Cu (108); Y (—); Th (133); Zn (101); Pb (103); Sr 

(93); As (130); and Rb (95). 

 

WDXRF analyses 

 

Using the 150-μm soil samples, pressed flat dies (3.4 cm of diameter and 0.7 cm of 

thickness) were obtained using an automatic press machine applying 2 ton cm−2. Each flat die 

was obtained by mixing 9.0 g of soil plus 1.0 g of Hoechst wax C micropowder (Merck®). The 

dies were screened using a wavelength dispersive X-ray (WDXRF) spectrometer Bruker® 

(Kennewick, WA, USA) S8 Tiger 4 kW model. The operational conditions were: (i) Rh X-ray 

tube (60 kV maximum) with 75 μm Be window; (ii) analyzer crystals - XS-55, PET, LiF (200): 

20–60 kV, 5–170 mA, and 4 kW. The analyses were performed using the Bruker® Quant-
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Express method. For this standardless method, after internal calibration-check the following 

recoveries (%) were found: Na2O (99), Al2O3 (99), SiO2 (100), SO3 (98), Cl (104), K2O (100), 

CaO (100), Fe2O3 (114), SrO (98), and Sb2O3 (98). For data spectral acquisition, processing, 

identification and quantification of the elements, the software Spectraplus (Geo-quant mode) 

was used. 

 

Statistical analysis 

 

Data from all three methods (USEPA 3051a, pXRF, and WDXRF) were subjected to 

descriptive statistics: minimum, maximum, mean, median, and standard deviation values. 

Comparisons between USEPA 3051a, pXRF, and WDXRF results were performed for the same 

elements determined by all methods. Linear regressions and graphs were obtained using 

both Sigma Plot 14.0 (Systat Software Inc., San Jose, CA, USA) and R software (RStudio 

Team, 2016). R and R2 values were considered as statistical parameters. 

 

Results and discussion 

 

Methodological comparison for elemental analysis 

 

After soil digestion (USEPA 3051a method) the following elements were determined via 

AAS: Fe≫Pb > Mn > Cu > Ni > Zn > As ≫ Cd (Table 1). Ribeiro et al. (2019) previously noted 

the concentrations and associated correlations with soil depth and other soil attributes. 

Summarily, cationic elements (e.g., Pb, Mn, Cu, Ni, and Zn) were correlated to soil organic 

matter content and its fractions (fulvic acid, humic acid, and humin); furthermore, Fe and As 

were correlated with each other (Ribeiro et al., 2019). The values obtained via AD did not 

exceed Brazilian threshold values (Conama Resolution 420, 2009; Cetesb, 2014; Copam 

Normative Deliberation 166, 2011). 

 

Table 1 

Elemental composition of studied Cerrado wetland soils after acid digestion (USEPA 3051a 

method) and determination via atomic absorption spectrometry (FAAS or GFAAS). 

Element Mean Median Minimum Maximum s.d. (%) 

Fe (g kg-1) 13.0 11.8 0.4 39.7 10.0 

Pb (mg kg-1) 21.8 12.2 6.3 93.4 18.0 
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Mn (mg kg-1) 16.4 10.9 2.9 151.0 17.3 

Cu (mg kg-1) 13.4 9.5 1.1 71.2 13.5 

Ni (mg kg-1) 6.8 5.5 0.6 39.1 5.7 

Zn (mg kg-1) 6.0 4.6 1.4 29.7 4.2 

As (mg kg-1) 5.4 4.3 0.6 15.7 3.4 

Cd (µg kg-1) 28.5 23.4 1.7 103.5 68.1 

s.d: standard deviation; recoveries (%): Fe (95); Pb (92); Mn (80); Cu (117); Ni (78); Zn (98); As (110); 

Cd (100); determination via FAAS: Fe, Mn, Cu, and Zn; determination via GFAAS: Pb, Ni, As, and Cd.      

 

By comparison, thirteen elements were quantified via WDXRF and ranked from the 

highest to lowest concentration (Table 2). Titanium and Fe were the major elements followed 

by V, Ce, Cr, Ba, Nb, Cu, Ni, Y, Zn, Pb, and Sr. Similarly, fourteen elements were quantified 

via pXRF and ranked: Si, Al, Fe, and Ti (major elements), Cr, Mn, Cu, Y, Th, Zn, Pb, Sr, 

As, and Rb (trace elements) (Table 3). The content of elements reported by the three methods 

was different, as expected. This is due to the intrinsic characteristic of each method/equipment, 

calibration, detection limits, etc. Comparing WDXRF and pXRF, the elements Si, Al, Mn, Th, 

As, and Rb were not detected by WDXRF; and V, Ce, Ba, Nb, and Ni were not reported by 

pXRF. However, the elements detected by both WDXRF and pXRF were ranked according to 

their concentrations as the same way: Fe and/or Ti followed by Cr, Cu, Y, Zn, Pb, and Sr. 

 

Table 2 

Elemental composition of studied Cerrado wetland soils via wavelength dispersive energy 

(WDXRF) method. 

Element Mean Median Minimum Maximum s.d. (%) 

Ti (g kg-1) 32.4 30.9 14.2 55.1 7.1 

Fe (g kg-1) 31.8 23.9 4.2 85.2 24.2 

V (mg kg-1) 280.3 285.0 119.0 472.0 51.5 

Ce (mg kg-1) 258.3 160.0 31.0 1,132.0 228.7 

Cr (mg kg-1) 178.9 121.0 58.0 1,252.0 173.2 

Ba (mg kg-1) 64.3 53.0 37.0 229.0 30.3 

Nb (mg kg-1) 60.2 58.0 21.0 131.0 16.0 

Cu (mg kg-1) 37.0 33.0 10.0 132.0 20.4 

Ni (mg kg-1) 33.2 30.0 14.0 145.0 19.5 

Y (mg kg-1) 31.0 25.0 10.0 194.0 23.0 

Zn (mg kg-1) 22.9 21.0 11.0 51.0 9.0 

Pb (mg kg-1) 22.7 18.0 5.0 84.0 14.5 

Sr (mg kg-1) 19.7 17.0 10.0 58.0 9.6 
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Table 3  

Elemental composition of studied Cerrado wetland soils via portable X-ray fluorescence 

analysis (pXRF). 

Element Mean Median Minimum Maximum s.d. (%) 

Si (g kg-1) 169.7 163.9 75.9 342.8 59.5 

Al (g kg-1) 160.3 165.3 56.0 270.1 48.6 

Fe (g kg-1) 32.0 27.6 4.8 83.5 21.6 

Ti (g kg-1) 17.6 17.1 6.5 30.7 4.2 

Cr (mg kg-1) 145.0 67.0 25.0 1142.0 183.6 

Mn (mg kg-1) 127.1 102.0 23.0 465.0 85.6 

Cu (mg kg-1) 48.2 41.0 10.0 181.0 31.2 

Y (mg kg-1) 40.1 30.0 8.0 325.0 41.6 

Th (mg kg-1) 35.1 36.0 12.0 65.0 9.7 

Zn (mg kg-1) 28.2 27.0 13.0 81.0 10.7 

Pb (mg kg-1) 22.7 17.0 5.0 97.0 17.1 

Sr (mg kg-1) 14.5 12.0 4.0 48.0 9.0 

As (mg kg-1) 11.8 10.0 2.0 30.0 7.1 

Rb (mg kg-1) 3.3 3.0 1.0 12.0 2.1 

s.d.: standard deviation; Recoveries (%): Si (66); Al (86); Fe (92); Ti (108); Cr (76); Mn (94); Cu (108); 

Y (---); Th (133); Zn (101); Pb (103); Sr (93); As (130); and Rb (95).    

 

Conversely to non-hydromorphic soils from Cerrado biome, the major and trace 

elements geochemistry of Cerrado wetlands soils has been assessed by a very few studies. Also, 

there are no specific background reference values for Cerrado wetlands soils (Ribeiro et al., 

2019). Rosolen et al. (2015a) also determined the concentration of 18 elements (As, Ba, Ca, Cr, 

Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Sr, Ti, V, Zn, and Zr) after digestion with Aqua Regia 

(HCl/HNO3) followed by determination via ICP-OES in some wetland soils from Triângulo 

Mineiro region, Minas Gerais state. The authors found high concentrations for As, Cr and Cu 

attributed to agricultural practices in higher surrounding areas. 

The mean concentrations of total Cr via WDXRF and pXRF were 178.9 and 145.0 mg 

kg−1, respectively (Tables 2 and 3). When the soil samples were analyzed via both WDXRF 

and pXRF, 95% of total soil samples had total Cr concentration > 75.0 mg kg−1. For non-

hydromorphic soils of the Cerrado biome the total Cr concentration ranges from 85 to 118 mg 

kg−1 (Marques et al., 2004). Brazilian environmental legislation (Conama Resolution 420, 2009; 

Cetesb, 2014; Copam Normative Deliberation 166, 2011) establishes the semi-total 

concentration of 75 mg kg−1 as threshold value for Cr. Thus, the total Cr concentration values 

found here do not allow the assessment of contamination level. In wetlands soils impacted by 
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agricultural practices, Rosolen et al. (2015a) found Cr concentration up to 155 mg kg−1 after 

wet digestion (Aqua Regia). 

Even the WDXRF or pXRF reporting total Cu concentration, the mean value did not 

exceed the threshold value (60 mg kg−1) established by the Brazilian regulation considering the 

semi-total concentration. Moreover, only 8% of total soil samples had total concentration of Cu 

> 60 mg kg−1 (semi-total threshold reference value). The mean total concentration found for V 

was 280.3 mg kg−1 (Table 2) whereas the background value (semi-total) established for Minas 

Gerais State in Brazil after wet digestion (USEPA 3051a) is 129 mg kg−1 (Copam Normative 

Deliberation 166, 2011). In Brazil, there are no threshold values established for V yet. For non-

hydromorphic soils from Cerrado biome, the total V concentration ranged from 161 to 802 mg 

kg−1 (Marques et al., 2004). In the wetlands studied by Rosolen et al. (2015a) the V 

concentration ranged from 19.6 to 291.6 mg kg−1. 

The Ce concentration obtained via WDXRF (Table 2) ranged from 31.0 to 1132 mg 

kg−1 (mean = 258.3 mg kg−1 and median = 160 mg kg−1). Via pXRF Ce was not reported. 

Cerium is the most abundant rare earth element in the lithosphere and its mean concentration is 

∼65 mg kg−1. According to Ramos et al. (2016), Ce concentration in Brazilian soils ranges from 

15 to 286 mg kg−1. Marques et al. (2004) studied the trace element geochemistry of Cerrado 

soils and found background concentration values for Ce up to 250 mg kg−1. High Ce 

concentration in wetland soils may be explained by the agricultural use in surrounding higher 

areas. Due to the position of wetlands in the landscape (depressions), they are susceptible to 

accumulating contamination by eroded sediments, fertilizers and agrochemicals (Rosolen et al., 

2015a). For instance, high Ce concentration can be found in some fertilizers (up to 24,100 mg 

kg−1) (Ramos et al., 2016). 

The mean (64.3 mg kg−1) and median (58.0 mg kg−1) values for WDXRF Ba are close 

to the background values (64 mg kg−1) for Cerrado soils reported by Marques et al. (2004). For 

impacted wetlands soils the semi-total concentrations for Ba ranged from 9.0 to 190.3 mg kg−1 

(Rosolen et al., 2015a). The WDXRF Ni concentration was close to the legislative semi-total 

threshold value (30 mg kg−1) even considering the total concentration. The total concentration 

values for Pb via both WDXRF (Table 2) and pXRF (Table 3) can be considered safe. For Pb, 

the Brazilian legislation establishes the semi-total concentration values of 19.5 and 72 mg kg−1 

for background reference and threshold values, respectively. The mean and median values for 

total Pb via WDXRF were 22.7 and 18.0 mg kg−1, respectively (Table 2). Similar results were 

found for Pb when it was analyzed via pXRF (Table 3). Low Pb concentration was also 

observed in the wetlands soils studied by Rosolen et al. (2015a). The mean Zn concentration 
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(WDXRF/pXRF) was 22.9/28.2 mg kg−1, whereas the background concentration for Cerrado 

soils is 38 mg kg−1. The mean As total concentration (11.8 mg kg−1) obtained via pXRF (Table 

3) was lesser than the semi-total concentration (15.0 mg kg−1) established as threshold value. 

For wetlands soils influenced by agricultural activities, the As concentration after Aqua Regia 

digestion ranged from 10 to 30 mg kg−1 (Rosolen et al., 2015a). The concentrations found for 

Ti, Fe, Nb, Y, and Sr are reported in Table 2, however there are no reference values established 

for these elements considering either total or semi-total concentration for Brazilian soils. 

 

Correlations between USEPA 3051a, pXRF, and WDXRF methods 

 

Linear regressions were performed between pXRF and WDXRF for Pb, Cu, Zn, Cr, Fe, 

Ti, Sr, and Y (Fig. 3). These elements were quantified by both pXRF and WDXRF methods, 

and significant and strong correlations were observed with R and R2 values ranging from 0.91-

0.96 and 0.89–0.92, respectively. 
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Fig. 3. Linear regression between portable X-ray fluorescence (pXRF) and wavelength dispersive X-ray 

fluorescence (WDXRF) methods for Pb (a), Cu (b), Zn (c), Cr (d), Fe (e), Ti (f), Sr (g), and Y (h) 

concentrations in Cerrado wetland soils. Red dotted line indicates the 1:1 line. 

 

All three methods were used to assess Pb, Cu, Fe and Zn (Fig. 4). As expected, the 

pXRF and WDXRF results were higher than the results obtained via AD, except for Pb. The 
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AD Pb was strongly correlated to both pXRF and WDXRF with high R and R2 values, 

corroborating the results obtained by Al Maliki et al. (2017) and Lee et al. (2016). The lowest 

values found for AD can be attributed to the incomplete digestion of soil samples 

underestimating the results (Suh et al., 2016). Explicitly, AD results are considered semi-total. 

A total digestion of soil samples can be reached via USEPA method 3052 using both HNO3 and 

HF (Silva et al., 2014).  

 

Fig. 4. Linear regression between acid digestion, portable X-ray fluorescence (pXRF) and wavelength 

dispersive X-ray fluorescence (WDXRF) methods for Pb, Cu, Fe and Zn (a, b, c, d); Linear regression 
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between acid digestion and portable X-ray fluorescence (pXRF) methods for Mn and As (e, f); Linear 

regression between acid digestion and wavelength dispersive X-ray fluorescence (WDXRF) methods 

for Ni (g) in the studied Cerrado wetland soils. Red dotted line indicates the 1:1 line. 

 

According to Parsons et al. (2013) a perfect straight line would be obtained comparing 

the XRF data and the elemental concentrations after complete soil digestion (e.g., US EPA 3052 

method). For instance, a strong correlation was observed between WDXRF data and the 

elemental concentrations obtained after wet digestion (HNO3 + HCl + HF) (Arenas et al., 2011). 

A non-straight 1:1 line observed for Cu, Fe and Zn (Fig. 4) may be attributed to the occurrence 

of these elements as constituents of silicate minerals which are difficult to be totally digested 

by semi-total AD. 

The AD/pXRF and AD/WDXRF concentration ratios were both 0.99 for Pb (Fig. 5). 

Based on this result the pXRF can be considered suitable for Pb concentration assessment in 

wetland soils. For Zn, Fe, Cu, Mn, As and Ni the AD/XRF concentration ratio was <0.50. The 

lowest ratio was observed for Mn (AD/pXRF). For this element, the AD concentration 

corresponds to 12% of total concentration. Silva et al. (2014) compared the metal concentration 

after soil digestion by three USEPA methods (3050b, 3051a, and 3052). No differences were 

observed between 3051a (semi-total) and 3052 (total) methods for Pb and Cu; significant 

differences were observed for Hg, Ni, Cu, Cd, and especially Zn (see Fig. 5). 

 

 

Fig. 5. Acid digest/X-ray fluorescence concentration ratio for Pb, Cu, Fe, Zn, Mn, As e Ni in the studied 

Cerrado wetland soils. Error bars means the standard error (n=144). 

 

The pXRF method has been considered worldwide as a powerful tool for environmental, 

agronomic and pedological purposes (Weindorf et al., 2014). Its main advantage is the 

simultaneous and fast determination of various elements in seconds in the field or under 
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laboratory conditions. Also, this method can be considered environmentally-friendly. Of 

course, some limitations are expected like detection limits compared to AAS, ICP-OES and 

ICP-MS. The WDXRF method has high spectral resolution and low background interference 

allowing the determination of the light elements down to Be (Weindorf et al., 2014). However, 

the cost of the WDXRF equipment is very high. 

Regarding the pXRF methods, several works have found strong correlation with 

standard methods in different soils and environments. Radu and Diamond (2009) found a strong 

correlation between the pXRF and AAS measurements for As, Cu, and Zn using soil samples 

from silver mines and abandoned mining sites in North Tipperary, Ireland. Bilo et al. (2019) 

found a strong correlation between XRF and ICP-OES measurements for Pb, Zn, and Cd. 

Working in Australian soils, Rouillon and Taylor (2016) observed very high correlation 

coefficients for Pb, Cu, and Fe, comparing pXRF and wet digestion methods. Compared to aqua 

regia digestion followed by ICP-OES determination, two pXRF instruments satisfactorily 

quantified the total concentration of Cu, Pb, As, Cd, Zn, Fe, Ni, and Mn in 81 soil samples 

(Kilbride et al., 2006). 

The results of this study reinforce the pXRF technology as a powerful and accurate tool 

for fast characterization of soils (Weindorf et al., 2014). Regarding Cerrado wetlands soils, the 

total elemental composition can be obtained rapidly, allowing the determination of background 

reference values and identification of contaminated hotspots. The mapping of 

chemical properties of Cerrado wetlands areas will be greatly benefited by pXRF. Further 

studies are still needed prior to use pXRF in-situ, for example, to assess the effect of wet 

conditions on pXRF performance in hydromorphic soils (Ribeiro et al., 2018). Also, 

consideration should be given to combining pXRF data with auxiliary input data from other 

portable sensors, such as Vis-NIR, LIBS, NixTM and others to predict soil properties. 

 

Conclusions 

 

Portable X-ray fluorescence (pXRF) revealed great potential for fast characterization of 

Cerrado wetland soils. Several elements were successfully determined via pXRF and well 

correlated to other methods (e.g., AD and WDXRF). Since the XRF methods (pXRF and 

WDXRF) report the total elemental concentration, the results were higher than AD results, 

except for Pb. For Pb, a straight 1:1 correlation was observed between AD and XRF methods. 

Elements like Cu, Fe, Zn, Mn, As, and Ni had a low AD/XRF concentration ratio. Strong 
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correlations were observed between pXRF and WDXRF for Pb, Cu, Zn, Cr, Fe, Ti, Sr, and Y, 

reinforcing the accurate performance of pXRF. 
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Abstract: Foliar analysis is very important for the nutritional management of crops and as a 

supplemental parameter for soil fertilizer recommendation. The elemental composition of 

plants is traditionally obtained by laboratory-based methods after acid digestion of ground and 

sieved leaf samples. This analysis is time-consuming and generates toxic waste. By comparison, 

portable X-ray fluorescence (pXRF) spectrometry is a promising technology for rapid 

characterization of plants, eliminating such constraints. This worked aimed to assess the pXRF 

performance for elemental quantification of leaf samples from important Brazilian crops. For 

that, 614 samples from 28 plant species were collected across different regions of Brazil. 

Ground and sieved samples were analyzed after acid digestion (AD), followed by quantification 

via inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine the 

concentration of macronutrients (P, K, Ca, Mg, and S) and micronutrients (Fe, Zn, Mn, and 

Cu). The same plant nutrients were directly analyzed on ground leaf samples via pXRF. Four 

certified reference materials (CRMs) for plants were used for quality assurance control. Except 

for Mg, a very strong correlation was observed between pXRF and AD for all plant-nutrients 

and crops. The relationship between methods was nutrient- and crop-dependent. In particular, 

eucalyptus displayed optimal correlations for all elements, except for Mg. Opposite to 

eucalyptus, sugarcane showed the worst correlations for all the evaluated elements, except for 

S, which had a very strong correlation coefficient. Results demonstrate that for many crops, 

pXRF can reasonably quantify the concentration of macro- and micronutrients on ground and 

sieved leaf samples. Undoubtedly, this will contribute to enhance crop management strategies 

concomitant with increasing food quality and food security. 
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Introduction 

 

The nutritional status of crops is crucial for assuring high productivity, food quality, and 

food security [1,2]. Well-nourished plants are more resilient to pests and diseases [3–5] and to 

adverse environmental conditions (e.g., dry season, soil water deficiency) [6,7]. At present, 

Brazil is widely recognized as a global food supplier [8] and for being one of the last agricultural 

frontiers. According to current world rankings [8,9], Brazil is the number 1 producer of 

soybean, sugarcane, and coffee; the number 2 producer of oilseeds (sunflower seed, peanuts (in 

shell), cottonseed, and rapeseed); and the number 3 producer of maize. Suitable management 

of soil fertility and plant mineral nutrition in Brazilian agriculture is one of the main factors 

responsible for increasing productivity and achieving food security goals in highly weathered-

leached soils of Brazil [10]. 

The technical recommendation of fertilizers is frequently comprised of results from soil 

fertility analysis [11,12]. Additionally, chemical foliar analysis can be used as a complementary 

parameter for recommendation of fertilizers [13,14] to confirm observed visual deficiency of a 

given plant nutrient in the field and for temporal monitoring of the nutritional status of crops 

[15,16]. In sum, soil and foliar analyses are fundamental for successful fertilization and 

management of crops [17–19]. 

Foliar analysis of crops has been traditionally performed by wet digestion of oven-dried 

and ground leaf samples under laboratory conditions [20,21]. This analysis is time and labor 

consumptive and requires numerous chemicals. In the last two decades, portable X-ray 

fluorescence (pXRF) spectrometry has been an important and innovative tool in soil science 

[22,23]. At present, the pXRF method is recognized as an official method for soil analysis [22–

26]. In a few seconds, under laboratory conditions or directly in the field, the total elemental 

composition of soils can be easily and adequately obtained. Furthermore, pXRF methods 

require no chemicals and are thus environmentally friendly. Based on pXRF spectra, prediction 

models of many soil properties (e.g., pH, texture, soil organic matter, macro and 

micronutrients) have been established [27–31]. Several pXRF soil studies have been 

successfully conducted in tropical environments [32,33]. 

pXRF approaches can also be used for chemical analysis of plant tissues and seeds [34–

36]. However, there is no standard method for this and more investigations are still needed. 

Some previous works have successfully employed the pXRF to assess the elemental 

composition of vegetation [37–43]. The concentrations of Cu, Zn, Pb, K, and Fe from different 

plant species growing in polluted mines were obtained via pXRF and were well correlated to 
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laboratory-based methods [44]. For grasses, a strong correlation between pXRF and acid 

digestion was obtained for P, K, Ca, and Fe [45]. Sulfur, K, and Ca were reliably measured in 

cowpea, croton, mango, and maize leaves [40]. However, in Brazil, very few 

studies using pXRF for foliar analysis have been performed. The performance of pXRF was 

tested for soybean leaves [35] and for some varieties of sugarcane [46]. 

Given the lack of extensive research on pXRF elemental characterization of Brazilian 

crops, a study of such seems timely. Thus, the objective of this research was to compare the 

concentrations of macro- (P, K, Ca, Mg, and S) and micronutrients (Cu, Fe, Zn, and Mn) 

obtained via pXRF with those obtained via nitro-perchloric digestion, followed by inductively 

coupled plasma emission spectroscopy (ICP-OES) quantification. It was hypothesized that the 

pXRF will accurately quantify plant nutrients, showing strong correlations with conventional 

acid digestion and lab-based methods. These correlations are 

expected to be crop-dependent. If suitable correlations are obtained, the pXRF can be proposed 

as a fast, accurate, and environmentally friendly method for foliar analysis. 

 

Material and Methods 

 

Plant Material Collection from Brazilian Crops 

 

Diagnostic leaves from 28 plant species were collected in different regions of Brazil 

(Southern, Southeastern, and Northeast) (Figure 1). The procedures for sampling the diagnostic 

leaves in the field were specific for each crop (Table S1) [11]. A total of 614 composite leaf 

samples were collected for this work. Table 1 shows the number of samples for each crop. The 

samples were sent to an ISO/IEC Standard 17025 Laboratory of Soil and Plant Analysis located 

in Minas Gerais State, Brazil. In the laboratory, the samples were carefully washed with 

distilled water, oven-dried (60ºC), and ground (30 mesh). The ground leaf material was stored 

in cold chamber at 4ºC for further analysis. 
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Figure 1. Location of crops in different regions of Brazil selected for this study. 

 

 

Table 1. Plant species (Brazilian crops) selected for this work 

 

Crop Number of samples (n) 

Cereals and oilseeds (n = 157) 

Bean Phaseolus vulgaris 45 

Corn Zea mays 14 

Soybean Glycine max 11 

Sorghum Sorghum bicolor L. 24 

Wheat Triticum spp 1 

Cotton Gossypium hirsutum L. 62 

Fruits (n = 186) 

Banana Musa spp. 96 

Coconut Cocos nucifera L. 53 

Jackfruit Artocarpus heterophyllus 1 

Mango Mangifera indica 26 

Passion fruit Passiflora edulis 2 

Papaya Carica papaya 8 

Vegetables (n = 28) 

Garlic Allium sativum 2 

Green bean Phaseolus vulgaris L. 1 

Onion Allium cepa 2 

Tomato Solanum lycopersicum 1 

Lettuce Lactuca sativa 14 

Pumpkin Cucurbita spp 7 

Pepper Capsicum annuum 1 

Citrus (n = 46) 

Orange Citrus sinensis L. Osbeck 7 
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Lemon Citrus limon 39 

Forest trees (n = 84) 

Cedar Cedrela fissilis 5 

Eucalyptus Eucalyptus globulus Labill 78 

Teak trees Tectona grandis L.f. 1 

Perennials and semi-perennials (n = 113) 

Coffee Coffea ssp. 96 

Cocoa Theobroma cacao 1 

Sugarcane Saccharum officinarum 12 

Grass Poaceae 4 

 

Conventional Analysis of Plant Leaves: Acid Digestion (AD) Method 

 

For determination of P, K, Ca, Mg, S, Fe, Cu, Mn, and Zn, the ground samples were wet 

digested (using the nitro-perchloric acid method) [20,47] with modifications. The samples (0.5 

g) were transferred to 50-mL glass digestion tubes and treated with 6 mL of acid solution 

(HNO3:HClO4 2:1 v/v). Using a heating block digestion system, the samples were digested in 

three steps: i) heating at 120 ºC for 30 min; ii) heating at 160 ºC for 40 min; and iii) heating at 

210 ºC for 20 min. After digestion, the samples were cooled under laboratory conditions to 

room temperature (22 ºC). After cooling, the samples were transferred to 50 mL volumetric 

flasks, then brought to volume with ultrapure water. Sub-samples were analyzed using a Ciros 

Vision ICP-OES (Spectro Analytical Instruments Inc., Kleve, Germany). 

 

pXRF Analysis 

 

Plant nutrients (P, K, Ca, Mg, S, Fe, Cu, Mn, and Zn) were also quantified via pXRF 

using an Olympus Vanta analyzer (Olympus®, Waltham, MA) equipped with a Rh tube (10–

40 keV), silicon drift detector, and operated in the Geochem Mode on line power (115 VAC). 

Homogenized sub-samples of ground plant material (30 mesh) were packed into 23-mL plastic 

vials (48.9 mm high and 27.6 mm diameter). Inside the plastic vials, at least 1 cm thickness of 

plant material was assured for analysis. The vials were covered using Prolene® X-ray thin film 

(Chemplex Industries Inc., Palm City, FL, USA) and placed on the pXRF aperture. The X-ray 

thin film was held in place externally by latex rubber (Figure 2). The diameter of plastic vials 

was sufficient to cover the entire X-ray source and detector area without any influence of vial 

walls. The samples were scanned for 60 s as follows: beam 1 (first 30 s) for Fe, Cu, Mn, and 

Zn; beam 2 (last 30 s) for P, K, Ca, Mg, and S. 
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Figure 2. Details of portable X-ray fluorescence (pXRF) measurements. (a) Detail of ground leaf sample 

into the plastic vial and placed on X-ray source and detector aperture; (b) samples covered by a proper 

cap for protection against the X-ray; (c) data acquisition in real-time using a laptop connected to pXRF 

equipment. 

 

For quality assurance and quality control (QA/QC), the following materials were used: 

Olympus® stainless calibration coin; blank sample (pure SiO2) and three certified reference 

materials (CRMs) from the National Institute of Standards and Technology (NIST 1547 peach 

leaves, NIST 1573a tomato leaves, and NIST 1515 apple leaves). Additionally, an internal 

standard prepared from soybean leaves was also employed. For each studied element, the 

recoveries (pXRF value/certified value) were obtained and linear regressions were made. The 

obtained equations were used as corrections factors (CF) of pXRF measurements. The limits of 

detection (LOD) considered for low-density sample types were (mg kg-1): P (50); K (25); Ca 

(25); Mg (3000); S (50); Mn (5); Fe (5); Cu (5); and Zn (5). 

 

Statistical Analyses 

 

Descriptive statistics (maximum, minimum, median, average, and standard deviation) 

for the results obtained via both acid digestion (AD) and pXRF were calculated. For comparison 

between methods, correlations and simple linear regressions were performed for each crop. The 

crops with fewer than 10 samples (Table 1) were grouped and collectively termed “others” (e.g., 
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vegetables, fruits, etc.). For the full data set (n = 614), 70% of data were randomly selected to 

obtain linear regressions between AD and pXRF for each plant nutrient. The obtained equations 

were then validated using the remaining 30% of the data. The statistical significance of 

correlations and regressions was assessed based on Pearson’s correlation coefficient (R), 

determination coefficient of regression (R2), root mean square error (RMSE), and mean 

absolute error (MAE) (Equations (1) to (4), respectively). The linear regression analysis was 

performed using Sigma Plot Software version 14.0. 

 

𝑅 =
∑ 𝑥𝑖

𝑛
𝑖=1 𝑦𝑖 − 𝑥̅𝑦̅

√[∑ 𝑥𝑖
2𝑛

𝑖=1 − 𝑛𝑥̅2][∑ 𝑦𝑖
2𝑛

𝑖=1 − 𝑛𝑦̅2]

 
(1) 

 

where n, 𝑥̅ and 𝑦̅ indicates the number of samples and the respective mean of each 𝑥𝑖 and 𝑦𝑖 

variable. 

 

𝑅2 = 1 −  
∑ (𝑌𝑖 − Ŷ𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖 − Ȳ𝑖)2𝑛
𝑖=1

 (2) 

𝑅𝑀𝑆𝐸 =  √∑
(Ŷ𝑖 −  𝑌𝑖)2

𝑛

𝑛

𝑖=1

 (3) 

 

where, 𝑌𝑖, 𝑌̂𝑖 and 𝑌̅𝑖 indicates the observed, the predicted and the mean of the target variable. 

 

𝑀𝐴𝐸 =  
∑ |𝑦̂𝑖 − 𝑦|𝑛

𝑖=1

𝑛
 

(4) 

 

where n,  𝑦̂𝑖 and y indicates the number of samples and the pXRF and AD values. 
 

 

Results and Discussion 

 

Recoveries of Elements 

 

 For all elements, pXRF measurements were higher than certified values (Figure 3), 

supporting previous results [42]. A 1:1 straight correlation was not reached. However, the pXRF 

results were very reliable, since significant linear regressions between pXRF measurements and 

CRM values were obtained with very high R2 values (from 0.96 to 0.99) (Figure 3). The pXRF 

recoveries for each element were almost the same, independent of CRMs. The worst linear 
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regression (R2 = 0.88) was obtained for Mg (Figure 3d), which produces low fluorescence 

energy and can be influenced by spectral interference. This limitation for Mg has been reported 

and its quantification via pXRF should be conducted under vacuum conditions [40]. 

 

 

Figure 3. Calibration curve for obtained concentrations via pXRF and certified values for NIST 1515 

(apple leaves), NIST 1547 (peach leaves), NIST 1537a (tomato leaves), and an internal standard 

(soybean sample): (a) Phosphorus; (b) Potassium; (c) Calcium; (d) Magnesium; (e) Sulfur; (f) Iron; (g) 

Copper; (h) Manganese; (i) Zinc. 
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For quality assurance and control, calibration routine on specific matrices can be 

performed for X-ray fluorescence analysis of plants [48]. Here, a calibration curve was obtained 

(Figure 3). The b parameter of linear equations (y = bx) (Figure 3) was used as the correction 

factor (CF) of pXRF measurements. The CF values represent the mean recoveries for four 

CRMs (NIST 1547; NIST 1573a; NIST 1515; and the internal standard for soybean leaves). 

For elemental assessment of thatch, deciduous leaves, grasses, tree bark, and herbaceous plants, 

CF values were considered as a mean of recoveries obtained for NIST 1515 and NIST 1547 

[42]. The recovery assessment of CRMs is an important analytical procedure for quality 

assurance control of analysis [48], allowing a suitable interpretation and discussion of obtained 

results. 

 

General Description of AD and pXRF Data 

 

For all nutrients, the pXRF measurements were higher than LOD considered for low-

density powder samples. The pXRF concentrations were higher than AD (Table 2). These 

results were expected, since the pXRF reports the total elemental concentration rather than the 

acid extractable concentration. The performance of AD methods is influenced by the digestion 

procedure and dilutions before quantification via ICP-OES [49–51]. Conversely, AD results 

higher than pXRF were found [35]. However, in Reference [35], they compared the AD method 

using ground and sieved leaf samples with the pXRF measurements performed directly on fresh 

leaves. The authors attributed the difference between pXRF and AD to the irregular distribution 

of nutrients in the leaves. The water content of fresh leaves can also be another factor 

influencing the results, since the water can attenuate X-rays [52] 

and underestimates the results [40]. 

Many factors can influence the plant analysis via X-ray fluorescence techniques [53]. 

The performance of pXRF is related to particle size distribution, uniformity, homogeneity, 

thickness, and water content [40,42,54,55]. In this work, the pXRF measurements were 

performed on ground (30 mesh) and sieved samples. A perfect uniformity of plant material size 

distribution was not expected. However, the size uniformity of plant materials had a minimal 

effect on chemical analysis via X-ray fluorescence techniques [54]. 

For all macro- and micronutrients, the mean values were higher than the mean adequate 

concentrations for plants (MACP) [55,56] (Table 2). Regarding the macronutrients, except for 

P, the percentage of samples with concentrations higher than the MACP ranged from 81% (Ca) 

to 90% (Mg). For P, only 38% of samples were higher than the MACP. For the micronutrients, 
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the percentage of samples with concentrations exceeding the MACP ranged from 53% (Fe) to 

67% (Zn). The most limiting nutrient was P, corroborating the very high P-adsorption capacity 

of highly-weathered leached soils (e.g., Oxisols) of Brazil [10,57,58], mainly by Fe oxides 

minerals. However, other facts that should be considered for this result is the fertility 

management and the differentiated nutritional need of P of the different evaluated crops. The 

mean concentrations of macronutrients decreased as K > Ca > Mg > S = P. For the 

micronutrients, concentrations were observed as Mn > Fe > Zn > Cu. In general, these results 

corroborate the expected uptake of nutrients by plants [55,56,59,60]. Plant mineral nutrition 

varies between species and from old to young leaves [55,56]. It is worthy to mention that in this 

work standard diagnostic leaves for nutritional status assessment were employed. 

After N (not detectable by pXRF), Ca and K are the most abundant elements in plant 

dry matter, with concentrations ranging from 1 to 80 g kg-1 [56]. For Ca, both pXRF and AD 

methods (Table 2) resulted in similar mean values (13.64 and 14.15 g kg-1, respectively), and 

81% of samples had Ca concentrations higher than the MACP [55]. The mean K concentrations 

varied slightly more between methods (24.20 and 18.12 g kg-1 for pXRF and AD, respectively), 

but both reported concentrations were considered appropriate. For K, 83% of samples exceeded 

the MACP (Table 2). Similar Ca and K concentrations in cowpea, maize, and mango leaves 

were also obtained via pXRF [40]. Sulfur is the macronutrient found in lower concentrations in 

plant dry matter, ranging from 1 to 15 g kg-1 [56,59]. The obtained results by both AD and 

pXRF (2.24 and 2.95 g kg-1, respectively) support this average concentration. These values 

were very similar to mean P concentrations (2.46 and 2.23 g kg-1, respectively, for AD and 

pXRF methods), which were below the adequacy level (3 to 5 g kg-1) [60]. 

High concentrations were observed for Mn, ranging from 21.73 to 4170 mg kg-1 when 

analyzed via pXRF and from 0.34 to 3273 mg kg-1 when analyzed via AD (Table 2). Adequate 

concentrations for foliar Mn in plants range from 30 to 500 mg kg-1, with a deficiency from 20 

to 30 mg kg-1 and toxicity between 200 and 5300 mg kg-1, depending on the species [61]. The 

mean and median concentrations obtained for Fe via both AD and pXRF were within the range 

expected for plants (50 to 250 mg kg-1) but values up to 792 mg kg-1 were found via pXRF. 

Normally, Fe deficiency occurs at concentrations below 50 mg kg-1 [59]. Zinc concentration in 

plant dry matter is commonly at least five times higher than Cu [56]. Yet in this work, Cu 

concentrations in the leaves were much higher than those of Zn. It is possible that the low levels 

of Zn in the leaves are related to the antagonistic effect of Cu, which causes a reduction in Zn 

uptake [62]. 
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Table 2. Descriptive statistics (minimum, maximum, median, mean, and standard deviation) for pXRF and acid digestion (AD) data. 

 
Nutrient Minimum Maximum Median Mean s.d. 

MACP 
% 

 pXRF  AD pXRF   AD pXRF  AD pXRF AD pXRF  AD  

P (g kg-1) 0.52  0.32 8.99  10.96 1.67  1.64 2.46   2.23 1.75   1.71 2 38 

K (g kg-1) 2.56   0.83 91.68   49.18 21.27  17.56 24.20   18.12 15.41  9.48 10 83 

Ca (g kg-1) 2.08   0.48 55.49   58.74 13.96   10.80 13.64   14.15 9.94   10.96 5 81 

Mg (g kg-1) 4.34   0.79 19.34   15.09 8.36  3.89 8.62  4.30 2.35   2.34 2 90 
S (g kg-1) 0.65   0.51 14.96  15.46 2.53  1.86 2.95  2.24 1.68   1.61 1 86 

Fe (mg kg-1) 43.00   6.90 792.06   687.13 143.62  104.30 194.14  131.59 121.76  93.49 100 53 

Cu (mg kg-1) 0.00  0.18 795.84  719.40 8.16  7.39 20.76  18.03 61.55  54.53 6 63 

Mn (mg kg-1) 21.73  0.34 4170.04  3273.00 183.33  97.50 282.58  220.76 440.31  355.79 50 61 
Zn (mg kg-1) 7.65   2.38 376.89   345.58 24.48  23.79 35.25  31.32 35.70  33.32 20 67 

Mean adequate concentration for plant growth (MACP) [55]; ** The pXRF did not detect Mg in 36% of samples. For Mg, the descriptive statistic represents 

64% of full data set. %:  percentage of samples with concentration higher than MACP.  
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Correlation between AD and pXRF 

 

The obtained equations from linear regression (70% of full dataset) between AD and 

pXRF are shown in Table 3. Considering that AD methods are still a standard method for plant 

analysis, the AD data were plotted as a function of pXRF (AD = a + pXRFx). Except for Mg, 

high R values were obtained, ranging from 0.81 (K) to 0.98 (Cu). The R2 values ranged from 

0.66 (K, S, and Fe) to 0.97 (Cu). 

 

Table 3. Linear equations obtained for 70% of the full dataset correlating to pXRF and AD 

data. 

 

Plant-Nutrient Equation R R² 

P AD = 0.80pXRF + 0.27* 0.84 0.70 

K AD = 0.49pXRF + 6.23* 0.81 0.66 

Ca AD = 1.01pXRF - 2.24* 0.92 0.84 

Mg AD = 0.13pXRF + 3.26ns 0.12 0.01 

S AD = 0.79pXRF - 0.08* 0.81 0.66 

Cu AD = 0.87pXRF + 0.09* 0.98 0.97 

Fe AD = 0.63pXRF + 7.76* 0.82 0.66 

Zn AD = 0.59pXRF + 0.52* 0.92 0.85 

Mn AD = 0.69pXRF + 18.73* 0.91 0.83 

* p<0.01; ns: non-significant. 

 

The non-significant correlation observed for Mg is related to the limitations for its 

determination via XRF techniques, as discussed before [40]. The validation of the obtained 

equations (Table 3) using 30% of the data revealed a very accurate prediction for all plant 

nutrients, with high R and R2 values (Figure 4). The best prediction was observed for Cu (R 

and R2 = 0.99; RMSE = 6.47 mg kg-1). Based on R and R2 values, the accuracy of predictions 

decreased in the following order: Cu > Mn > Zn > Ca > Fe > P > K > S. 

Except for Ca, the micronutrients (heaviest elements) were better predicted than 

macronutrients (lightest elements). The ability of the X-ray fluorescence techniques to detect a 

particular element is directly related to its atomic number (Z) [63]. As the atomic number 

increases, so does the fluorescence energy. Thus, the so-called light elements (lighter than Ca; 

e.g., K, P, S, and Mg) are generally weakly identified and quantified via X-ray fluorescence 

techniques, while the heavier elements (Z > 20, e.g., Cu, Zn, Fe, and Mn) can be easily measured 

[22]. For the lightest elements (Mg, P, and S), the best performance of pXRF would be reached 

under vacuum conditions and without a Prolene® film [40]. Even without specific and intricate 

vacuum conditions, suitable correlations between AD and pXRF were obtained (Figure 4). A 
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strong correlation was obtained (R = 0.99) between pXRF and AD for S using pressed pellets 

of sugarcane leaves [46]. For P, a strong correlation between pXRF data and AD using CRMs 

for plants was also obtained [64]. 

The concentration of a given element in the sample can also influence the pXRF 

performance. For instance, Mn and Fe feature similar atomic numbers (Z = 25 and Z = 26, 

respectively), yet the prediction for Mn was better than Fe. As seen in Table 2, the Mn 

concentrations were higher than Fe. Similarly, Zn and Cu have similar atomic numbers (30 and 

29, respectively). Better correlation was observed for Cu, as Cu concentrations were higher than 

Zn (Table 2). The adequate performance observed for Ca can also be related to its high 

concentration (Table 2). Similarly, a better correlation for Ca and K compared to Mn and Fe 

was found, where the total concentration within the plant was the compelling factor [65]. 
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Figure 4. Prediction of macro- and micronutrients concentration in leaf samples from Brazilian crops 

(n = 614) using pXRF: (a) Phosphorus; (b) Potassium; (c) Calcium; (d) Magnesium; (e) Sulfur; (f) 

Copper; (g) Iron; (h) Zinc; (i) Manganese. 
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Correlation between pXRF and AD for Each Crop 

 

The correlation between pXRF and AD was nutrient- and crop-dependent (Figure 5). 

For P (Figure 5a), a very strong correlation between methods was observed for coconut, cotton, 

lettuce, soybean, and eucalyptus. Sugarcane showed no correlation for P. For K (Figure 5b), a 

very strong correlation was observed for eucalyptus, cotton, corn, banana, and sorghum and a 

weak correlation was shown for lettuce. Regarding Ca (Figure 5c), the correlation was strong 

and very strong for most crops and a weak correlation was also observed for sugarcane. As 

expected, the worst correlations were observed for Mg (Figure 5d), where only citrus had a 

strong correlation. For this nutrient, moderate correlations were observed for banana, soybean, 

common bean, and lettuce; weak correlations were observed for sorghum and eucalyptus; and 

no significant correlations were observed for coconut, cotton, and coffee. For S (Figure 5e), 

contrary to P and Ca, a very strong correlation was 

observed for sugarcane and no significant correlations were observed for sorghum and corn. 

Regarding the micronutrients, very strong and strong correlations were observed for 

most crops, mainly for Fe, Mn, and Cu (Figure 5f–h). Corroborating the results for P and Ca, 

for all micronutrients, the worst correlation was observed in sugarcane. Regarding the 

macronutrients, the mean absolute errors (MAEs) were quite low (Table 4). The highest MAE 

values were observed for K (corn, lettuce, sorghum, and sugarcane), ranging from 14.57 to 

35.39 mg kg-1 for these crops. For the micronutrients and considering all crops, the mean MAE 

decreased as Fe (74 mg kg-1) > Mn (56 mg kg-1) > Zn (7.4 mg kg-1) > Cu (5.1 mg kg-1). 
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Table 4. The mean absolute error (MAE) between pXRF and AD methods for each nutrient 

and crop. 

 

Crop P K Ca Mg S Cu Fe Zn Mn 
 --------------(g kg−1) -------------- ------------------ (mg kg−1)-------------------- 

Banana 0.19 6.3 0.75 4.41 0.49 1.56 41.28 1.72 106.07 

Citrus 0.24 0.24 2.94 1.55 0.01 0.37 66.22 1.58 30.39 

Coconut 0.65 5.94 1.99 1.84 1.27 1.92 50.83 2.23 54.39 

Coffee 0.01 4.73 4.5 3.49 0.67 5.91 44.13 3.2 48.86 

Common bean 0.45 2.68 6.45 1.71 0.74 2.98 80.16 7.72 33.7 

Corn 1.29 18.41 4.61 * 2.12 7.43 102.52 23.91 52.75 

Cotton 0.37 0.51 1.43 5.73 1.02 1.45 26.89 1.64 33.08 

Eucalyptus 0.58 3.37 3.65 5.64 0.52 1.77 96.6 5.55 153.14 

Lettuce 2.16 32.59 3.63 2.49 1.82 17.37 91.2 14.24 56.18 

Mango 0.33 0.76 5.19 * 0.24 4.28 31.75 1.51 40.31 

Sorghum 2.17 35.39 4.24 8.17 1.95 5.69 194.55 22.42 32.72 

Soybean 0.81 3.5 6.05 0.9 0.88 15.78 99.18 10.27 55.21 

Sugarcane 0.41 14.57 2.96 * 0.18 2.16 67.59 6.13 50.29 

Others 0.42 6.85 0.7 6.39 0.45 3.34 47.64 1.14 30.79 

Mean 0.72 9.70 3.51 3.85 0.88 5.14 74.32 7.38 55.56 

Citrus: orange and lemon. Others: pumpkin, garlic, cocoa, onion, cedar, grass, jackfruit, passion 

fruit, papaya, pepper, wheat, tomato, teak tree, and green bean. *For Mg, there was no sufficient 

data for corn, mango, or sugarcane. 
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Figure 5. Correlation coefficient (R) and determination coefficient (R2) from the linear regression 

between pXRF and AD methods for each nutrient and crop. Citrus: orange and lemon. Others: pumpkin, 

garlic, cocoa, onion, cedar, grass, jackfruit, passion fruit, papaya, pepper, wheat, tomato, teak tree, and 

green bean. For Mg, there was no sufficient data for corn, mango, or sugarcane: (a) Phosphorus; (b) 

Potassium; (c) Calcium; (d) Magnesium; (e) Sulfur; (f) Iron; (g) Manganese; (h) Copper; (i) Zinc. 

 

Supporting the results found in this work, a strong correlation between pXRF and AD 

was also observed for Ca, Mn, Zn, and Cu in different plant species [44]. Assessing the 
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elemental composition of plants (thatch, deciduous leaves, grasses, tree bark, and herbaceous 

plants) in mining-impacted areas, a significant correlation for Cu, Fe, Zn, Mn, Cd, Pb, and K 

was found [42]. Conversely, a poor correlation was observed for Cu in lettuce plants [41]. The 

results found that Ca, Cu, Zn, and Mn corroborate the performance of pXRF for soybean, wheat, 

corn, and cotton samples [37]. 

Different correlations between methods can be related to the intrinsic characteristics of 

plant materials, which will determine the performance of AD procedures [66]. The pXRF 

performance may be related to the anatomic characteristics of each plant species influencing 

the X-ray absorption and emission of the fluorescent energy. Further studies involving plant 

anatomy (e.g., epidermis, adaxial and abaxial surfaces, cuticle, stomata, and mesophyll) are still 

needed to elucidate the diverse performance of pXRF for plant analysis. After that, in-field 

measurements will be greatly benefited. It is hypothesized here that plant materials with higher 

cellulose and lignin contents may be more difficult to digest. In general, grasses usually feature 

higher cellulose and lignin contents [67]. The acid digestion of a lettuce leaf or even the 

penetration of X-rays may be quite different when compared to more lignified leaves. 

The accurate performance of pXRF to assess the elemental composition of plants will 

very likely contribute to fast and in-field diagnostic of nutritional status, improving the suitable 

management of soil fertility properties, food quality, and food security. Based on the results of 

this work, the foliar elemental composition can be analyzed via pXRF on ground and sieved 

leaf samples, eliminating the need for AD. For in-field applications, further studies are still 

needed to assess the other factors that can influence the pXRF results, such as water content, 

anatomy of leaves, cellulose, and lignin contents. Additionally, the nutritional status should be 

assessed combining pXRF with other proximal sensors (e.g., Vis-NIR, NixPro), as such 

techniques have been proven to enhance predictive models in coal and soils [68,69]. Especially 

for crops in which foliar fertilization is necessary, the pXRF can be a useful tool for decision-

making. The assessment of fruit quality and nutritive value via pXRF is also promising [70] 

and worthy of additional study. 

 

Conclusions 

 

Except for Mg, pXRF spectrometry successfully quantified macro- and micronutrients 

in several leaf samples from important Brazilian crops. For many nutrients, a very strong 

correlation was observed between pXRF and the most traditional method for foliar analysis 

(nitro-perchloric digestion). The correlation between pXRF and acid digestion was nutrient- 
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and crop-dependent. Except for Mg, a very strong correlation was always observed for 

eucalyptus leaves. Conversely, except for S and K, a weak or non-significant correlation was 

observed for sugarcane leaves. 

pXRF measurements made directly on ground and sieved leaf samples has a great 

potential to replace conventional foliar analysis based on acid digestion, dispensing the use of 

chemicals, acquisition, and maintenance of high-cost equipment (e.g., an atomic absorption 

spectrometer, an inductively coupled plasma-optical emission spectrometer). Measurements in 

the field directly on intact and fresh leaves still need more studies to elucidate all factors that 

can influence the pXRF performance for plant analysis. 
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Abstract - The color of plant leaves can be assessed qualitatively by color charts or after 

intricate processing of digital images. This pilot study employed a novel pocket-sized sensor to 

obtain the color of plant leaves. In order to assess its performance, a color-dependent parameter 

(SPAD index) was used as dependent variable, since there is a strong correlation between SPAD 

index and greenness of plant leaves. A total of 1,872 fresh and intact leaves from 13 crops were 

analyzed using a SPAD-502 meter and scanned using the NixTM Pro color sensor. The color 

was assessed via RGB and CIELab systems. The full dataset was divided into calibration (70% 

of data) and validation (30% of data). For each crop and color pattern, multiple linear regression 

(MLR) analysis and multivariate modeling [least absolute shrinkage and selection operator 

(LASSO), and elastic net (ENET) regression]. The obtained MLR equations and multivariate 

models were then tested using the validation dataset based on r, R2, root mean squared error 

(RMSE), and mean absolute error (MAE). In both RGB and CIELab color systems, the NixTM 

Pro color sensor was able to differentiate crops, and the SPAD indices were successfully 

predicted, mainly for mango, quinoa, peach, pear, and rice crops. The correlation between 

SPAD and greenness is crop-dependent. Overall, the NixTM Pro color sensor revealed to be a 

fast, sensible and an easy way to obtain color of leaves directly in the field, constituting a 

reliable alternative to digital camera imagery and associated image processing. 

 

Keywords: NixTM Pro color sensor. SPAD. Plant leaves. Chlorophyll.    
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Introduction 

 

In field conditions, the color of plant leaves can be qualitatively assessed and 

differentiated via color charts (e.g., Munsell Color Chart for Plant Tissues, Globe Plant Color 

Chart, and Leaf Color Chart) (Ali et al., 2014; O’campo et al., 2015; Tao et al., 2020). The most 

common is the former (Munsell Color, 1977) which reports hue (color name), value 

(brightness), and chroma (saturation) parameters (Mizunuma et al., 2014). This is a simple and 

low-cost technique to obtain the color of plant leaves, however, it depends on the perception of 

human eyes and sunlight conditions. Color charts have been commonly employed for N 

management in rice (Bathia et al., 2012; Witt et al., 2005), maize (Pasuquin et al., 2012; Shukla 

et al., 2004; Varinderpal et al., 2011), soybean (Prilianti et al., 2014; Rorie et al., 2011), and 

wheat crops (Shukla et al., 2004).       

Technological advancements have allowed the quantitative determination of leaf color 

based on images (Majer et al., 2010). Several studies have elucidated the use of digital and 

different images processing for a range of purposes, such as: nitrogen status assessment (Baresel 

et al., 2017; Errecart et al., 2012; Prilianti et al., 2014; Ravier et al., 2017; Reyes et al. 2017), 

weed and crop discrimination (Aitkenhead et al., 2003), leaf disease detection (Singh et al., 

2020), senescence evaluation (Hu et al., 2010), and leaf water content assessment (Ge et al., 

2016).  

Recently the NixTM Pro color sensor, a pocket-sized and smartphone-based 

multipurpose color sensor, has been launched in the market (www.nixsensor.com). This device 

can be operated in Android and iOS operating systems via Bluetooth. The sensor can be placed 

on any solid surface without the influence of external light while the color can be easily and 

instantaneously obtained in different color space models (e.g., RGB, CIELab, CMYK, and 

HEX). 

The NixTM Pro color sensor has been successfully employed in Soil and Environmental 

Science, for example, to determine the soil color for pedological classification purposes 

(Mancini et al., 2020; Stiglitz et al. 2016) and to predict the soil organic matter content 

(Mukhopadhyay et al., 2020; Raeesi et al. 2019). For geological and mining purposes, the NixTM 

color parameters combined with portable X-ray fluorescence spectrometry data successfully 

predicted the S content in lignite (Kagiliery et al., 2019). To date, there is no application of the 

NixTM color sensor in Plant Science. 

http://www.nixsensor.com/
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Thus, this pilot study was carried out in order to assess the performance and sensibility 

of the NixTM Pro color sensor to obtain and detect changes in the color of plant leaves. For that, 

several plant leaves from different crops were analyzed via Nix sensor and the obtained color 

parameters were used to predict the chlorophyll content as SPAD index. The Soil Plant Analysis 

Development (SPAD) sensor is the most common chlorophyll meter used worldwide (Manetas 

et al., 1998; Dong et al., 2019; Ling et al., 2011; Xiong et al., 2015; Yuan et al., 2016), and 

responsible for the characteristic greenness of plants (Ocampo et al., 2015). Thus, alterations 

of the greenness are a useful parameter for evaluation of plant conditions (Majer et al., 2010) 

as they provide insight about nutrient status (Singh et al., 2002), plant diseases (Patil and Bodhi, 

2001) and senescence evaluation (Hu et al., 2010). Also, chlorophyll content has a strong 

correlation with crop productivity (Rorie et al., 2011; Wood et al., 1993). If successful 

prediction of SPAD is obtained, the Nix Pro Color Sensor can be considered an innovative, 

sensible and low-cost technique to assess the color of plant leaves rapidly and quantitatively.     

 

Material and Methods 

 

Plant materials 

 

 For this study, a total of 1,872 leaves from 13 crops were analyzed: atemoya  

(n = 50), common bean (n = 570), corn (n = 100), coffee (n = 128), grape (n = 100), mango (n 

= 47), passion fruit (n= 60), peach (n = 99), pear (n = 100), quinoa (n = 268), rice (n = 150), 

soybean (n = 100), and sugarcane (n =100). Table A.1 brings the scientific names and genotypes 

(cultivar or variety) for each selected crop. For most crops (atemoya, coffee, common bean, 

corn, mango, passion fruit, peach, quinoa, and rice) just one genotype was studied. For 

sugarcane, 57 different genotypes were randomly analyzed in the field. The selected leaves 

were obtained from either crop fields or greenhouse experiments (Fig. 1). For each crop, the 

leaves were randomly selected to obtain a large variation in the greenness. The crop fields and 

greenhouse experiments are in Lavras, Minas Gerais, Brazil. According to Köppen`s 

classification the climate is Cwa, with a mean annual temperature of 20.4º C and a mean annual 

rainfall of 1,460 mm (Dantas et al., 2007), with dry and cold winters and rainy and hot summers.   

 

Data acquisition 

 

SPAD index measurements 
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For the SPAD index assessment, the SPAD-502 Plus chlorophyll meter (Konica Minolta 

Sensing, Osaka, Japan) was used (Minolta, 1989). The leaves were divided into three portions 

from petiole to tip: base, middle, and apex (Fig. 1a). In the middle region, three measurements 

were performed (L1, L2, and L3). The SPAD value of each measurement was calculated 

according to Eq. 1 and the used value corresponded to the average of three measurements. 

Detailed information about SPAD index determination based on optical parameters using the 

SPAD-502 chlorophyll meter can be found in Minolta (1989), Markwell et al. (1995) and Wood 

et al. (1993).   

 

SPAD = a [Log(
I0r

Ir

)-Log (
I0f

If

)] +b 
(1) 

Here, a and b are constants; Ir and If are electrical currents from red and infrared at the 

time of measurement, respectively; and I0r and I0f are electrical currents from red and 

infrared with no measurement, respectively. 
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Figure 1. Details of the Soil Plant Analysis Development (SPAD) measurements (a) and color 

determination via NixTM Pro Color Sensor (b and c). 

 

Leaf color measurements 

 

For the same leaves used to assess the SPAD index, the leaf color was obtained using 

the NixTM Pro color sensor (Nix Team, Ontario, Canada) (Fig. 1b). The measurement was 

performed at the central region of the middle leaf portion. The NixTM has an internal LED light 

source that is activated at the time of measurement. The measurement were instantaneously 

obtained after press the “scan” bottom of the application. So, the reflected color is captured and, 

by a specific model, converted into various color parameters (e.g., RGB, CIELab, HEX, 

CMYK, XYZ, etc.). For this work, default conditions (D50 illuminant and 2º reference angle) 

and RGB and CIELab color systems were selected. A detailed discussion of each color systems 
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can be found in Fairchild (2013) and Ohta and Robertson (2005). In the CIELab system, L 

means lightness ranging from black (0) to white (100); a corresponds to green-red component 

ranging from -128 (green) to +127 (red); b corresponds to blue-yellow component also ranging 

from -128 (blue) to +127 (yellow). In the RGB system, R, G, and B correspond to red, green, 

and blue colors, respectively. For all these parameters, the values range from 0 to 255.    

Nix color measurements were performed under direct sunlight on the adaxial leaf 

surface. The leaves were handheld, assuring that the equipment aperture (1.5 cm of diameter) 

was totally covered with no influence of external light. A previous experiment using sugarcane 

leaves was carried out in order to check for that, where the Nix color measurements (n = 100) 

were performed placing the leaves on wood with different background colors (white, black, red, 

orange, yellow, green, blue, and violet). Results (Appendix A, Figure A.1) indicated no 

difference between background surface conditions and hand. Thus, holding the leaves by hand 

was considered a suitable and simple procedure in the field. 

 

Statistical analyses  

 

 Descriptive statistics (minimum, maximum, mean, and median values) were calculated 

for SPAD index and each color parameter (R, G, B, L, a, and b). Principal component analysis 

(PCA) was executed to group and/or distinguish crops with similar greenness. 

For each crop and color system, the SPAD index was predicted based on color 

parameters using multiple linear regression (MLR). MLR equations were developed for the 

randomly selected 70% calibration dataset. Subsequently, the obtained MLR equations were 

validated using 30% of the data (validation dataset). The statistical significance of MLR 

equations (calibration dataset) was assessed by the correlation (r) and determination (R2) 

coefficients, respectively. The prediction accuracy of MLR models was assessed using root 

mean squared error (RMSE) (Eq. 2) and mean absolute error (MAE) (Eq. 3). Statistical 

procedures and graphs were implemented using Sigma Plot 14.0 (Systat Software Inc., San 

Jose, CA, USA) and R software (RStudio Team, 2016). 

RMSE = √∑
(Ŷi- Yi)

2

n

n

i=1

 

 

(2) 

Here, Yi and Ŷi indicate observed and predicted values. 
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MAE = 
∑ |ŷ

i
-y|n

i=1

n
 

(3) 

Here, n, ŷ
i
, and y indicate the number of samples, observed and predicted values, 

respectively.  

 

Subsequently, for better interpretation of SPAD prediction via combined color 

parameters (R, G, B, L, a, and b) on each crop separately, a rigorous comparison between MLR, 

least absolute shrinkage and selection operator (LASSO), and elastic net (ENET) regression 

was executed. Notably, LASSO is a regularized linear regression model that can select variables 

and estimate coefficient simultaneously while ENET is a generalization of LASSO and ridge 

regression (Tibshirani, 1996; Zou and Hastie, 2005). Notably, sum squared of error (SSEMLR) 

from MLR is expressed as (Eq. 4): 

 

SSEMLR= ∑(A-Â)
2
 (4) 

Here, A and Â represent the actual response value and the predicted value, respectively. In 

LASSO regression, an L1 penalty term is added to the model and causes coefficients to shrink 

(Tibshirani, 1996). This L1 term aids in the feature selection during modelling and is given by 

Eq. 5:  

 

SSELasso= ∑(A-Â)
2
+ λ ∑ |β|      (5) 

Here, SSELasso is the SSEMLR plus the L1 penalty term.  

ENET regression combines both Ridge and LASSO penalties (Eq. 6):   

SSEENET= ∑(A-Â)
2
+ λ [(1-α) ∑ β

2
+α ∑|β|]    (6) 

Here, SSEENET is computed from the SSEMLR plus the L2 and L1 penalties and L2 denotes the 

Ridge regression penalty. In addition to the two penalties, a mixing parameter α is also added 

to the model. 

To achieve an objective comparison, the data for each crop was randomly split 50 times 

into a calibration set (75%) and validation set (25%). Each time, LASSO, ENET, and MLR 

were fitted on the calibration set, and the validation set was used for testing the calibration 

performance. The R2 on the validation set was used to evaluate the prediction accuracy. Both 
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LASSO and ENET were executed using the ‘glmmet’ package in R version 3.6.2 (R Core Team, 

2020).  

 

Results and Discussion  

 

General description of SPAD indices and color parameters    

 

From PCA analysis it was possible to distinguish the crops based on color parameters 

(Fig. 2). This information is relevant for SPAD value prediction since the greenness of leaves 

is a property intrinsic of each plant species and the prediction models must be specific for each 

crop. PCA analysis also revealed that SPAD was positively influenced by a and negatively by 

R, G, L, and b parameters. The positive correlation observed for a parameter can be attributed 

to the fact that most a values were negative (99.6% of all samples). This means that all samples 

are in the green region. Within this region, as the a value increases the color becomes darker 

green (Baldevbhai and Anand, 2012; Ganesan et al., 2010). In the PCA graph (Fig. 2), from left 

to right the lightness increases. For example, the negative correlation observed between SPAD 

and R and G parameters means that the color changed (left to right) from dark-red to light-red 

and from dark-green to light-green, respectively. Summarily, the crops on the left side (e.g., 

coffee, corn, and grape) are darker green showing the highest SPAD values, corroborating the 

results obtained earlier for spinach (Agarwal et al., 2018), potato (Yadav et al., 2010), and 

barley leaves (Hu et al., 2010). The inverse correlation observed between SPAD values and R 

and G parameters from the RGB color system, and to L and b parameters from the CIELab 

color system, corroborates the results obtained by Cavallo et al. (2017), Vollmann et al. (2011) 

and Vesali et al. (2015). The non-influence of the B parameter on SPAD prediction was also 

observed by Agarwal et al. (2018).     

High chlorophyll contents result in higher light absorbance, reducing the light reflection 

(Carter and Knapp, 2001) with a concomitant reduction in brightness and RGB values (Agarwal 

et al. 2018). In the CIELab system, the L parameter corresponds to lightness, ranging from 

black (L = 0) to white (L=100) (Baldevbhai and Anand, 2012; Hill et al., 1997). Thus, an inverse 

correlation between L and SPAD is also expected.  
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Figure 2. Principal component analysis (PCA) for differentiation of studied crops based on color 

parameters from RGB and CIELab systems.   

 

Figure 3 displays a color scheme built with real values from the RGB color system for 

each crop. From left to right, minimum, median and maximum values for SPAD indices and 

color parameters are presented. As the greenness increases (from left to right) the SPAD values 

also increase and range from 18.0 (quinoa) to 83.0 (coffee). The largest and smallest SPAD 

index variation was observed for quinoa (from 18 to 79) and for soybean (33.6 to 48.1), 

respectively. Moreover, moderate range (21.1 to 60.6) was observed for common bean. The 

greenness variation obtained for each crop (Fig. 2) can be influenced by environmental aspects, 

nutritional, and physiological conditions of plants (Borrell et al., 2001; Xiong et al., 2015; Yang 

et al., 2016). This color variation for each crop is important to obtain prediction models. The 

chlorophyll content is highly dependent on the time of sampling and vegetative period (Karele, 

2001; Reith et al., 1991), reaching maximum values close to flowering stage (Riccardi et al. 

2014). Notably, changes in chlorophyll content over time were observed for corn and sugar 

maple (Acer saccharum M.) crops (Croft et al., 2014). 
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Figure 3. Soil Plant Analysis Development (SPAD) index and color parameters variation (minimum, 

median and maximum values) for each studied crop. 

 

A suitable comparison of the obtained SPAD index with other studies is difficult since 

the chlorophyll content depends on several conditions of the leaves such as water deficit 

(Rolando et al., 2015; Soureshjani et al., 2019), growth stage (Karele, 2001), and nutritional 
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status (Barbedo et al., 2019). SPAD index is merely a conversion of optical parameters into a 

non-dimensional value which reflects the influence of chlorophyll on light reflectance 

(Markwell et al., 1995; Wood et al., 1993). The real chlorophyll content is normally expressed 

in g cm-2. Previous studies have confirmed a consistent correlation between SPAD index and 

chlorophyll content for a wide range of crop species such as rice, maize, wheat, cotton, soybean, 

grape, and coffee (Markwell et al., 1995; Netto et al., 2005; Steele et al., 2008; Wood et al., 

1993). Ling et al. (2011) reported a mean difference between SPAD and conventional solvent-

extracted chlorophyll of only 6%. For quinoa leaves chlorophyll contents ranged from 0.6 to 

55.6 g cm-2 (Riccardi et al., 2014). These authors proposed equations to predict the chlorophyll 

content based on the SPAD index. Incorporating the SPAD values obtained for quinoa leaves 

in this study to the equations given by Riccardi et al. (2014), predicted chlorophyll content 

ranged from 7.7 to 83.7 

g cm-2. Nevertheless, the SPAD values obtained for common bean (26.0 to 50.2) and soybean 

(33.6 to 48.4) corroborated the values obtained by Darkwa et al. (2016) and Yokoyama et al. 

(2018), respectively. 

SPAD index has strong correlation with N concentration in plant leaves and crop 

productivity (Lindsey et al., 2016; Shafagh-Kolvanagh et al., 2008; Yu et al., 2010). For rice, 

SPAD values from 35 to 48 have been associated to adequate N concentration and higher crop 

yields (Huang et al., 2008; Peng et al., 1996; Yang et al., 2014). In this work, SPAD values for 

rice leaves ranged from 27.8 to 55.9 (Fig. 3) and 94% of samples had SPAD higher than 35.0. 

For maize, SPAD values from 42.0 to 55.0 have been associated to the highest grain yields (Liu 

and Wiatrak, 2012; Rostami et al., 2008). Piekielek et al. (1995) suggested SPAD value of 52.0 

as the critical level for N sufficiency. Here, 66% of samples had SPAD values higher than 52.0. 

Similarly, Reis et al. (2009) and Netto et al. (2005) found a close relationship between crop 

production, N status and SPAD values for coffee plants. The maximum N supply (300 kg ha-1) 

corresponded to the maximum SPAD value (70.8) and foliar N content (33.3 g kg-1) (Reis et 

al., 2009). The maximum N content of coffee leaves corresponded to a SPAD value of 94.2 

(Netto et al., 2005).   

 

SPAD indices prediction  

 

MLR equations obtained for each color system are presented in Table 1. The highest r and 

R2 values were obtained for mango (0.92) and quinoa (0.91) leaves for both RGB and CIELab 
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system, and the lowest for sugarcane (0.48 and 0.49 for RGB and CIELab system, respectively). 

The lowest r and R2 values found for sugarcane can be attributed to the fact that 57 genotypes 

(cultivars) were randomly scanned in the field. Thus, the intrinsic genetic characteristic may 

have influenced the correlation between chlorophyll content (as SPAD index) and greenness. 

Although a general MLR equation has limited applications, since the greenness is a particular 

characteristic of each species, it yielded r and R2 values of 0.72 and 0.52, respectively.  

 

Table 1. Obtained equations from multiple linear regression (MLR) for prediction of SPAD 

index using color parameters from RGB and CIELab systems.   

Crop  MLR r R² 

Atemoya 
SPADRGB = 39.79 - 0.43R + 0.10G + 0.44B 0.55 0.23 

SPADLab =  40.73 + 0.23L - 0.81a - 0.94b 0.56 0.25 

Bean 
SPADRGB = 65.19 + 0.18R - 0.72G + 0.54B 0.80 0.64 

SPADLab = 68.87 - 0.06L + 0.68a - 0.85b 0.81 0.65 

Coffee 
SPADRGB = 75.76 + 0.95R - 1.40G + 0.75B 0.67 0.42 

SPADLab = 81.46 + 0.54L + 2.47a - 0.57b 0.68 0.44 

Corn 
SPADRGB = 89.07 + 0.17R - 0.90G + 0.51B 0.81 0.64 

SPADLab = 92.85 - 0.58L + 0.87a - 0.73b 0.82 0.65 

Grape 
SPADRGB = 64.18 + 0.46R - 0.92G + 0.44B 0.81 0.64 

SPADLab = 67.47 - 0.12L + 1.22a - 0.51b 0.80 0.63 

Mango 
SPADRGB = 66.55 - 0.46R+ 0.03G + 0.16B 0.92 0.82 

SPADLab = 68.33 - 0.66L -0.75a - 0.46b 0.92 0.82 

Passion fruit 
SPADRGB = 37.67 - 0.52R + 0.34G + 0.19B 0.69 0.43 

SPADLab = 38.69 + 0.04L - 0.96a - 0.56b 0.68 0.43 

Peach 
SPADRGB = 66.43 + 0.45R - 0.80G + 0.30B 0.78 0.59 

SPADLab = 71.10 - 0.20L + 1.29a - 0.27b 0.79 0.60 

Pear 
SPADRGB = 50.15 - 0.16R - 0.22G + 0.43B 0.73 0.52 

SPADLab = 50.66 + 0.09L - 0.33a - 0.87b 0.74 0.53 

Quinoa 
SPADRGB = 103.45 + 0.87R - 1.72G + 0.73B 0.91 0.82 

SPADLab = 108.99 - 0.43L + 2.15a - 0.91b 0.91 0.83 

Rice 
SPADRGB = 61.89 - 0.30R - 0.25G + 0.64B 0.85 0.72 

SPADLab = 64.75 + 0.22L - 0.40a - 1.35b 0.86 0.73 

Soybean 
SPADRGB = 38.71 + 0.37R - 0.79G + 0.76B 0.67 0.42 

SPADLab = 42.59 + 0.78L + 1.17a - 1.11b 0.68 0.44 

Sugarcane 
SPADRGB = 42.14 - 0.67R + 0.17G + 0.54B 0.48 0.19 

SPADLab = 41.26 + 0.11L - 1.44a - 1.33b 0.49 0.20 

Full dataset 
SPADRGB = 77.70 + 0.15R - 0.68G + 0.36B 0.71 0.50 

SPADLab =  80.68 - 0.43L + 0.62a - 0.59b 0.72 0.52 

SPAD: Soil Plant Analysis Development 

 

Considering the full dataset, the SPAD calibration model based on RGB parameters 

(Fig. 4a) exhibited r, R2, RMSE and MAE values of 0.71, 0.50, 7.4, and 5.9, respectively. 
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Similar values were observed for the validation dataset (Fig. 4a). The SPAD prediction 

accuracy using the color parameters from CIELab (Fig. 4b) was almost the same as produced 

by the RGB system. 

 

 
Figure 4. Prediction of SPAD index considering the full dataset for RGB (a) and CIELab (b) color 

systems. SPAD: Soil Plant Analysis Development.   

 

Compared to the prediction considering the full dataset (Fig. 4), SPAD prediction for 

each crop using both RGB (Fig. 5) and CIELab color systems (Fig. 6) increased the r and R2 

values and decreased RMSE and MAE values. Based on R2 values, the best prediction was 

observed for mango (0.90), followed by quinoa (0.77), pear (0.70), peach (0.66), and rice (0.59) 

leaves. The worst prediction was observed for sugarcane leaves (R2 = 0.11). Leaf color 

(greenness) and chlorophyll content are closely correlated and so the use of color parameters 

for chlorophyll content prediction has been widely tested in previous studies (Gitelson et al. 

2003; Karcher and Richardson, 2003; Vesali et al. 2015; Yao and Luo, 2012). 
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Figure 5. Prediction of SPAD index for each crop using the color parameters from RGB system. SPAD: 

Soil Plant Analysis Development.   

 



81 

 

 

 

 
Figure 6. Prediction of SPAD index for each crop using the color parameters from CIELab system. 

SPAD: Soil Plant Analysis Development. 
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Yadav et al. (2010) also employed a MLR model for chlorophyll content prediction in 

potato leaves. However, instead of simply using R, G, and B values, the authors used the mean 

brightness and mean brightness ratio [R/(R+G+B)]. The best predictive model was obtained 

using the mean brightness ratio (RMSE = 6.6) which was attributed to the RGB dependence on 

light intensity and subsequently solved by normalization. In this study, there was no effect of 

light intensity on color components, since it was acquired under constant illumination. Notably, 

the NixTM Pro color sensor emits the same light intensity in all scanning conditions. 

Dey et al. (2018) used the same RGB-based approach for SPAD index prediction for 

betel (Piper betle L.) where the most accurate model used the R and B parameters in an MLR 

equation and yielded an RMSE value of 5.53. Agarwal et al. (2018), compared the capacity of 

six different color systems to predict the SPAD values of spinach leaves and achieved the lowest 

RMSE (2.68) and the highest R2 (0.86) for the CIELab color system. In the present work, the 

RGB and CIELab color systems yielded almost the same model generalization for all evaluated 

crops, corroborating the findings obtained by Hu et al. (2010). RGB color parameters provided 

the lowest RMSE values for coffee (4.6), grape (3.2), and sugarcane (3.3) (Fig. 5), while the 

CIELab parameters yielded the lowest RMSE value for peach (2.0) and quinoa (5.4) (Fig. 6). 

Previous studies have reported the better performance of machine learning algorithms 

compared to simple MLR analysis for leaf chlorophyll content prediction. For corn, Vesali et 

al. (2015) observed an increase in R² value and a decrease in RMSE value using a neural 

network model compared to a multiple linear model. Similarly, Liu et al. (2010) using spectral 

indices as inputs observed R2 of 0.71 when using a multiple regression model and of 0.90 when 

applied a neural network for rice. Despite that, when used together in a linear combination in 

this study, the R, G, B and L, a, and b parameters were able to reasonably predict the SPAD 

values (Figs. 5 and 6). 

The boxplots of validation R2 based on 50 replications for each crop on three methods 

(LASSO, ENET , and MLR) revealed that three crops (atemoya, passion fruit, and sugarcane) 

had many negative R2 values and the median of the R2 was close to zero (Fig. 7). These results 

indicated that fitting a linear regression may not be prudent for these three crops and thus 

subsequent calculation and comparisons were made for the remaining 10 crops. The relative 

validation R2 on the rest 10 crops was plotted in Fig. 8. Notably, relative validation R2 was 

calculated by scaling validation R2 values within each iteration where the maximum obtained 

R2 was given a value of 1. Consequently, the smaller R2 values indicated reduced model 

performance. Results indicated that ENET performed best in most crops (e.g., coffee, corn, 

mango, pear, rice, and soy) and very close to MLR in bean, grape, peach, and quinoa. Although 
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MLR produced the worst performance, it produced values within 0.8 (in terms of validation R2) 

in most trials. 
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Figure 7. Validation R2 based on 50 replications for each crop on three multivariate methods 
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Figure 8. The relative validation R2 based on 50 replications for 10 crops using three multivariate methods. 
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Plotting the LASSO model coefficients for interpretation purposes (Fig. A.2) suggested 

which variables should be used for subsequent MLR models. For example, for coffee, the model 

should include a and b parameters. Subsequently, Fig. 9 exhibits the MLR model prediction 

plots using LASSO selected parameters and indicated reasonable model performance.  
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Figure 9. MLR-SPAD prediction plots using all LASSO selected parameters for 10 crops.
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Summarily, the use of NixTM Pro color sensor for rapid and cost-effective assessment of 

plant leaves is promising. Future works involving soil environmental conditions, such as water 

availability, fertility, texture, structure, effective depth and drainage, nutritional conditions 

(e.g., N and Mg contents) and physiological aspects of plants (e.g., vigor and productivity) 

using the pocket-sized color sensor are encouraged. For example, Singh et al. (2002) proposed 

threshold leaf color greenness for N fertilization purposes using merely color charts. This 

approach can be greatly benefited by digital color parameters easily obtained using in-field 

sensors (Bang et al., 2020).  

 

Conclusions  

 

The NixTM Pro color sensor revealed to be an easy, fast, sensible and accurate tool to 

obtain the color of plant leaves in the field. In this pilot study, based on color parameters from 

both RGB and CIELab color systems, a color-dependent parameter (SPAD index) was 

satisfactorily predicted using multiple linear regression, mainly for mango, quinoa, peach, pear, 

and rice leaves. Further, while combining all color parameters, the ENET model produced better 

prediction accuracy for most crops. Since the color parameters are easily obtained in a 

quantitative manner, the NixTM Pro color sensor is a better option for color acquisition than 

conventional digital cameras or smartphones. Also, the color parameters from NixTM Pro color 

sensor can work as auxiliary data to confirm and/or validate color obtained by using advanced 

remote sensing technologies. From this work, several other applications and calibrations can be 

performed for different plant species and environmental conditions worldwide, for example, to 

estimate the real chlorophyll content, N and Mg contents, and many factors influencing the 

nutritional status of plants, based exclusively on color parameters from NixTM Pro color sensor. 

Also, color data can be combined to other sensors such as portable X-ray fluorescence 

spectrometer (pXRF) and laser-induced breakdown spectroscopy (LIBS) producing results 

even better.  
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Appendix A 

 
Figure A.1. Assessing the effect of background conditions to obtain the color of plant leaves using 

NixTM Pro Color Sensor. (a) Holding the sugarcane leaf by hands assuring no influence of external light. 

(b) Assessing the color on different background surfaces. Comparison of different background surfaces 

and hands in the RGB (c) and CIELab (d) color systems. Error bars indicate the standard deviation (n = 

20).  

Observation: There was not significant difference between solid background surface having different 

colors and handheld. 
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Figure A.2. LASSO model coefficients for all six Nix Pro color parameters.
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FINAL CONSIDERATIONS 

 

 Environment and sustainable agricultural development requires the adoption of new 

methods and technologies. In this context, the use of sophisticated and portable sensors in the 

agricultural and environmental sciences is a reality. Nowadays, smart farming technologies 

have been gradually incorporated several sensors in the production system. In this work, the 

potential of portable X-ray fluorescence spectrometry (pXRF) for soil and plant 

characterization was reinforced. It was demonstrated that pXRF was efficient to assess the total 

elemental composition of an important wet ecosystem in the Brazilian Savannah. From this 

work, further studies in the field can be carried out contributing to still scarce inventory of 

wetland soils from Cerrado biome. Regarding plants, the determination of macro- and 

micronutrients in ground and sieved plant material via pXRF is really promising. Now, the great 

challenge and contribution will be to obtain the nutritional condition of plants directly in the 

field. Undoubtedly, this approach will contribute to the best management practices of soil and 

foliar fertilization. Excess or deficiency of a given plant nutrient could be easily assessed in 

seconds. To the best of our knowledge, this work showed for the first time the potential of a 

pocket-sized sensor to obtain the color of plant leaves, and several other studies can be 

performed to predict nutritional and physiological conditions of plants combining to other 

sensors able to assess the elemental composition and reflectance properties. Finally, it is 

believed that this doctoral thesis contributed to: “Let’s bring the lab to the field”.                 

 


